Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 188965 by normans last updated on 09/Mar/23

Answered by mr W last updated on 09/Mar/23

say edge length of cube is 1.  base of isosceles triangle is (√2).  length of its legs is (√(1^2 +((1/( (√2))))^2 ))=((√6)/2).  sin (α/2)=((√2)/2)×(2/( (√6)))=(1/( (√3)))  cos α=1−2×((1/( (√3))))^2 =(1/3)  ⇒α=cos^(−1) (1/3)≈70.529°

$${say}\:{edge}\:{length}\:{of}\:{cube}\:{is}\:\mathrm{1}. \\ $$$${base}\:{of}\:{isosceles}\:{triangle}\:{is}\:\sqrt{\mathrm{2}}. \\ $$$${length}\:{of}\:{its}\:{legs}\:{is}\:\sqrt{\mathrm{1}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}. \\ $$$$\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{cos}\:\alpha=\mathrm{1}−\mathrm{2}×\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\approx\mathrm{70}.\mathrm{529}° \\ $$

Answered by manxsol last updated on 10/Mar/23

A=(l,0,l)  B=(l,l,0)  M=(0,(l/2),(l/2))  MA=(l,-(l/2),(l/2))  ∣MA∣=(√(3/2))l  MB=(l,(l/2),-(l/2)) ∣MB∣=(√((3/2)l))∣  MA•MB=∣MA∣∣MB∣cosθ  (l,-(l/2),(l/2))•(l,(l/2),-(l/2))=(√(3/2))(√((3/2) ))l^2 cosθ  (l^2 /2)=(√(3/2))(√((3/2) ))l^2 cosθ  (1/3)=cosθ  cos^(−1) ((1/3))  70.528^o

$${A}=\left({l},\mathrm{0},{l}\right) \\ $$$${B}=\left({l},{l},\mathrm{0}\right) \\ $$$${M}=\left(\mathrm{0},\frac{{l}}{\mathrm{2}},\frac{{l}}{\mathrm{2}}\right) \\ $$$${MA}=\left({l},-\frac{{l}}{\mathrm{2}},\frac{{l}}{\mathrm{2}}\right)\:\:\mid{MA}\mid=\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}{l} \\ $$$${MB}=\left({l},\frac{{l}}{\mathrm{2}},-\frac{{l}}{\mathrm{2}}\right)\:\mid{MB}\mid=\sqrt{\frac{\mathrm{3}}{\mathrm{2}}{l}}\mid \\ $$$${MA}\bullet{MB}=\mid{MA}\mid\mid{MB}\mid{cos}\theta \\ $$$$\left({l},-\frac{{l}}{\mathrm{2}},\frac{{l}}{\mathrm{2}}\right)\bullet\left({l},\frac{{l}}{\mathrm{2}},-\frac{{l}}{\mathrm{2}}\right)=\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\sqrt{\frac{\mathrm{3}}{\mathrm{2}}\:}{l}^{\mathrm{2}} {cos}\theta \\ $$$$\frac{{l}^{\mathrm{2}} }{\mathrm{2}}=\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\sqrt{\frac{\mathrm{3}}{\mathrm{2}}\:}{l}^{\mathrm{2}} {cos}\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}={cos}\theta \\ $$$$\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\mathrm{70}.\mathrm{528}\:^{{o}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com