Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 188861 by Shlock last updated on 08/Mar/23

Answered by cortano12 last updated on 08/Mar/23

 ∫_0 ^4  x d(f ′(x))= [ x f ′(x)−f(x) ]_0 ^4    = [4 f ′(4)−f(4)+f(0)]   = 4.(1/2)−2+3 = 3

$$\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\mathrm{x}\:\mathrm{d}\left(\mathrm{f}\:'\left(\mathrm{x}\right)\right)=\:\left[\:\mathrm{x}\:\mathrm{f}\:'\left(\mathrm{x}\right)−\mathrm{f}\left(\mathrm{x}\right)\:\right]_{\mathrm{0}} ^{\mathrm{4}} \\ $$$$\:=\:\left[\mathrm{4}\:\mathrm{f}\:'\left(\mathrm{4}\right)−\mathrm{f}\left(\mathrm{4}\right)+\mathrm{f}\left(\mathrm{0}\right)\right] \\ $$$$\:=\:\mathrm{4}.\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}+\mathrm{3}\:=\:\mathrm{3}\: \\ $$

Answered by mr W last updated on 08/Mar/23

∫^4 _0 xf′′(x)dx  =∫^4 _0 xdf′(x)  =[xf′(x)]_0 ^4 −∫^4 _0 f′(x)dx  =[xf′(x)]_0 ^4 −[f(x)]_0 ^4   =4f′(4)−f(4)+f(0)  =4×(2/4)−2+3  =3

$$\underset{\mathrm{0}} {\int}^{\mathrm{4}} {xf}''\left({x}\right){dx} \\ $$$$=\underset{\mathrm{0}} {\int}^{\mathrm{4}} {xdf}'\left({x}\right) \\ $$$$=\left[{xf}'\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{4}} −\underset{\mathrm{0}} {\int}^{\mathrm{4}} {f}'\left({x}\right){dx} \\ $$$$=\left[{xf}'\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{4}} −\left[{f}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{4}} \\ $$$$=\mathrm{4}{f}'\left(\mathrm{4}\right)−{f}\left(\mathrm{4}\right)+{f}\left(\mathrm{0}\right) \\ $$$$=\mathrm{4}×\frac{\mathrm{2}}{\mathrm{4}}−\mathrm{2}+\mathrm{3} \\ $$$$=\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com