Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 188752 by Soma last updated on 06/Mar/23

Commented by Yacouba last updated on 06/Mar/23

Df= {x∈R/x>0 et lnx≠0}

$$\mathrm{D}{f}=\:\left\{{x}\in\mathbb{R}/{x}>\mathrm{0}\:{et}\:\mathrm{ln}{x}\neq\mathrm{0}\right\} \\ $$

Answered by a.lgnaoui last updated on 06/Mar/23

1•D_f ={x/x∈R^(∗+)  et x≠1}         D_f   =]0,1[∪]1,+∞[  2•limf(x)_(x→0^+ ) =lim_(x→0^+ ) (1−(1/(lnx)))  =1−lim_(x→0^+ ) ((1/(lnx))  )=1     • limf(x)_(x→1^− ) =lim_(x→1^− ) ((−1)/(lnx))=+∞     •limf(x)_(x→1^+ ) =−∞     •limf(x)_(x→+∞) =lim_(x→+∞) ((x[(lnx+((lnx)/x))−(1/x)])/(lnx))=               =lim((xlnx)/(lnx))=+∞          =lim((xlnx)/(lnx))  3•lim(f(x)−x)_(x→+∞) =1−((1/(lnx)))=1  donc  au voisinage de +∞:f(x)≅x+1  x+1 est donc Asymptote a la courbe de f(x).   •x=0    x=1 (aussi asymptotes)  4•(f(x)−(x+1)=((−1)/(lnx))<0  donc   l asymptote[est au dessous de courbe(C)  5•f^′ (x)=1−((1/(lnx)))^′ =1+(1/(x(lnx)^2 ))  6•x>0⇒f^′ (x)>0 :(f(x) croissante)  7•tengenteℸa (C) au point x=e est  f(x)−f(e)=(x−e)f_(x=e) ^: (x)    f(e)=e   ⇒f′(e)=((e^2 +1)/e)      (x+1−(1/(lnx)))−e=((e^2 +1)/e)(x−e)  l equation est :  x(1−((e^2 +1)/e))−(1/(lnx))+e^2 +1=0  8•Voir   la courbe  (C)

$$\mathrm{1}\bullet{D}_{{f}} =\left\{{x}/{x}\in\mathbb{R}^{\ast+} \:{et}\:{x}\neq\mathrm{1}\right\} \\ $$$$\left.\:\:\:\:\:\:\:{D}_{{f}} \:\:=\right]\mathrm{0},\mathrm{1}\left[\cup\right]\mathrm{1},+\infty\left[\right. \\ $$$$\mathrm{2}\bullet{limf}\left({x}\right)_{{x}\rightarrow\mathrm{0}^{+} } ={lim}_{{x}\rightarrow\mathrm{0}^{+} } \left(\mathrm{1}−\frac{\mathrm{1}}{{lnx}}\right) \\ $$$$=\mathrm{1}−{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left(\frac{\mathrm{1}}{{lnx}}\:\:\right)=\mathrm{1} \\ $$$$\:\:\:\bullet\:{limf}\left({x}\right)_{{x}\rightarrow\mathrm{1}^{−} } ={lim}_{{x}\rightarrow\mathrm{1}^{−} } \frac{−\mathrm{1}}{{lnx}}=+\infty \\ $$$$\:\:\:\bullet{limf}\left({x}\right)_{{x}\rightarrow\mathrm{1}^{+} } =−\infty \\ $$$$\:\:\:\bullet{limf}\left({x}\right)_{{x}\rightarrow+\infty} ={lim}_{{x}\rightarrow+\infty} \frac{{x}\left[\left({lnx}+\frac{{lnx}}{{x}}\right)−\frac{\mathrm{1}}{{x}}\right]}{{lnx}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:={lim}\frac{{xlnx}}{{lnx}}=+\infty \\ $$$$\:\:\:\:\:\:\:\:={lim}\frac{{xlnx}}{{lnx}} \\ $$$$\mathrm{3}\bullet{lim}\left({f}\left({x}\right)−{x}\right)_{{x}\rightarrow+\infty} =\mathrm{1}−\left(\frac{\mathrm{1}}{{lnx}}\right)=\mathrm{1} \\ $$$${donc}\:\:{au}\:{voisinage}\:{de}\:+\infty:{f}\left({x}\right)\cong{x}+\mathrm{1} \\ $$$$\boldsymbol{{x}}+\mathrm{1}\:{est}\:{donc}\:{Asymptote}\:{a}\:{la}\:{courbe}\:{de}\:{f}\left({x}\right). \\ $$$$\:\bullet\boldsymbol{{x}}=\mathrm{0}\:\:\:\:\boldsymbol{{x}}=\mathrm{1}\:\left({aussi}\:{asymptotes}\right) \\ $$$$\mathrm{4}\bullet\left({f}\left({x}\right)−\left({x}+\mathrm{1}\right)=\frac{−\mathrm{1}}{{lnx}}<\mathrm{0}\right. \\ $$$${donc}\:\:\:{l}\:{asymptote}\left[{est}\:\boldsymbol{{au}}\:\boldsymbol{{dessous}}\:\boldsymbol{{de}}\:\boldsymbol{{courbe}}\left(\boldsymbol{{C}}\right)\right. \\ $$$$\mathrm{5}\bullet{f}^{'} \left({x}\right)=\mathrm{1}−\left(\frac{\mathrm{1}}{{lnx}}\right)^{'} =\mathrm{1}+\frac{\mathrm{1}}{{x}\left({lnx}\right)^{\mathrm{2}} } \\ $$$$\mathrm{6}\bullet{x}>\mathrm{0}\Rightarrow{f}^{'} \left({x}\right)>\mathrm{0}\::\left({f}\left({x}\right)\:{croissante}\right) \\ $$$$\mathrm{7}\bullet{tengente}\daleth{a}\:\left({C}\right)\:{au}\:{point}\:\boldsymbol{{x}}=\boldsymbol{{e}}\:{est} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{f}}\left(\boldsymbol{{e}}\right)=\left(\boldsymbol{{x}}−\boldsymbol{{e}}\right)\boldsymbol{{f}}_{{x}={e}} ^{:} \left({x}\right) \\ $$$$ \\ $$$${f}\left({e}\right)={e}\:\:\:\Rightarrow{f}'\left({e}\right)=\frac{{e}^{\mathrm{2}} +\mathrm{1}}{{e}} \\ $$$$\:\:\:\:\left({x}+\mathrm{1}−\frac{\mathrm{1}}{{lnx}}\right)−{e}=\frac{{e}^{\mathrm{2}} +\mathrm{1}}{{e}}\left({x}−{e}\right) \\ $$$${l}\:{equation}\:{est}\:: \\ $$$$\boldsymbol{{x}}\left(\mathrm{1}−\frac{\boldsymbol{{e}}^{\mathrm{2}} +\mathrm{1}}{\boldsymbol{{e}}}\right)−\frac{\mathrm{1}}{\boldsymbol{{lnx}}}+\boldsymbol{{e}}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{8}\bullet{Voir}\:\:\:{la}\:{courbe}\:\:\left({C}\right) \\ $$

Commented by a.lgnaoui last updated on 06/Mar/23

Commented by a.lgnaoui last updated on 06/Mar/23

  x:  0                   1                             +∞             1       /   +∞∣−∞          /           +∞

$$\:\:\boldsymbol{{x}}:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:/\:\:\:+\infty\mid−\infty\:\:\:\:\:\:\:\:\:\:/\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com