Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 188701 by cortano12 last updated on 05/Mar/23

Commented by mr W last updated on 06/Mar/23

x=15°

$${x}=\mathrm{15}° \\ $$

Commented by cortano12 last updated on 07/Mar/23

yes

$$\mathrm{yes} \\ $$

Answered by a.lgnaoui last updated on 05/Mar/23

△ABE   △BIE   ∡BIE=3x  BD ∥EF∥MN⇒(∡DBE=∡FEM=∡NMC=90)[∡B=90+x]  △NMC triangle rectangle en M  ⇒∡FNM−∡CNN=∡NCM+90      180−3x=2x+90                                    x=18°

$$\bigtriangleup{ABE}\:\:\:\bigtriangleup{BIE}\:\:\:\measuredangle{BIE}=\mathrm{3}{x} \\ $$$${BD}\:\parallel{EF}\parallel{MN}\Rightarrow\left(\measuredangle{DBE}=\measuredangle{FEM}=\measuredangle{NMC}=\mathrm{90}\right)\left[\measuredangle{B}=\mathrm{90}+{x}\right] \\ $$$$\bigtriangleup{NMC}\:{triangle}\:{rectangle}\:{en}\:{M} \\ $$$$\Rightarrow\measuredangle{FNM}−\measuredangle{CNN}=\measuredangle{NCM}+\mathrm{90} \\ $$$$\:\:\:\:\mathrm{180}−\mathrm{3}{x}=\mathrm{2}{x}+\mathrm{90}\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}=\mathrm{18}° \\ $$

Commented by a.lgnaoui last updated on 05/Mar/23

Commented by mr W last updated on 06/Mar/23

wrong!  you can check with x=18° you can′t  get BD=DC.

$${wrong}! \\ $$$${you}\:{can}\:{check}\:{with}\:{x}=\mathrm{18}°\:{you}\:{can}'{t} \\ $$$${get}\:{BD}={DC}. \\ $$

Commented by mehdee42 last updated on 06/Mar/23

this value cannot be correct according to the shape

$${this}\:{value}\:{cannot}\:{be}\:{correct}\:{according}\:{to}\:{the}\:{shape} \\ $$

Answered by mehdee42 last updated on 06/Mar/23

((sin(90+x))/(sin2x))=((sin2x)/(sin(90−5x)))  ⇒cos5x=2sinx×sin2x  x=15^

$$\frac{{sin}\left(\mathrm{90}+{x}\right)}{{sin}\mathrm{2}{x}}=\frac{{sin}\mathrm{2}{x}}{{sin}\left(\mathrm{90}−\mathrm{5}{x}\right)} \\ $$$$\Rightarrow{cos}\mathrm{5}{x}=\mathrm{2}{sinx}×{sin}\mathrm{2}{x} \\ $$$${x}=\mathrm{15}^{} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com