Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 188568 by 073 last updated on 03/Mar/23

Answered by floor(10²Eta[1]) last updated on 03/Mar/23

f(h(−4))  3^(−x) +3^x =−4⇒1+3^(2x) =−4.3^x   ⇒3^(2x) +4.3^x +1=0⇒3^x =(√3)−2⇒x=log_3 ((√3)−2)  ⇒h(−4)=9^(−log_3 ((√3)−2)) +9^(log_3 ((√3)−2)) −2  =(1/(((√3)−2)^2 ))+((√3)−2)^2 −2=(1/(7−4(√3)))+5−4(√3)  =((84−48(√3))/(7−4(√3)))=12  ⇒f(h(−4))=f(12)  x^3 +4=12⇒x=2⇒f(12)=−7    f(h(−4))=−7

$$\mathrm{f}\left(\mathrm{h}\left(−\mathrm{4}\right)\right) \\ $$$$\mathrm{3}^{−\mathrm{x}} +\mathrm{3}^{\mathrm{x}} =−\mathrm{4}\Rightarrow\mathrm{1}+\mathrm{3}^{\mathrm{2x}} =−\mathrm{4}.\mathrm{3}^{\mathrm{x}} \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{2x}} +\mathrm{4}.\mathrm{3}^{\mathrm{x}} +\mathrm{1}=\mathrm{0}\Rightarrow\mathrm{3}^{\mathrm{x}} =\sqrt{\mathrm{3}}−\mathrm{2}\Rightarrow\mathrm{x}=\mathrm{log}_{\mathrm{3}} \left(\sqrt{\mathrm{3}}−\mathrm{2}\right) \\ $$$$\Rightarrow\mathrm{h}\left(−\mathrm{4}\right)=\mathrm{9}^{−\mathrm{log}_{\mathrm{3}} \left(\sqrt{\mathrm{3}}−\mathrm{2}\right)} +\mathrm{9}^{\mathrm{log}_{\mathrm{3}} \left(\sqrt{\mathrm{3}}−\mathrm{2}\right)} −\mathrm{2} \\ $$$$=\frac{\mathrm{1}}{\left(\sqrt{\mathrm{3}}−\mathrm{2}\right)^{\mathrm{2}} }+\left(\sqrt{\mathrm{3}}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}=\frac{\mathrm{1}}{\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}}+\mathrm{5}−\mathrm{4}\sqrt{\mathrm{3}} \\ $$$$=\frac{\mathrm{84}−\mathrm{48}\sqrt{\mathrm{3}}}{\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}}=\mathrm{12} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{h}\left(−\mathrm{4}\right)\right)=\mathrm{f}\left(\mathrm{12}\right) \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{4}=\mathrm{12}\Rightarrow\mathrm{x}=\mathrm{2}\Rightarrow\mathrm{f}\left(\mathrm{12}\right)=−\mathrm{7} \\ $$$$ \\ $$$$\mathrm{f}\left(\mathrm{h}\left(−\mathrm{4}\right)\right)=−\mathrm{7} \\ $$

Commented by 073 last updated on 03/Mar/23

nice solution  thanks

$$\mathrm{nice}\:\mathrm{solution} \\ $$$$\mathrm{thanks} \\ $$

Answered by manxsol last updated on 04/Mar/23

y=3^x +(1/3^x )⇒y^2 =9^x +(1/9^x )+2  h(y)=y^2 −4  h(x)=x^2 −4  foh   ((ℜ),() ) h^(  ↷)    ((([-4,+∞^() ])),() )  f^↷    ((([-7,+∞])),() )  f(h(−4))=  h(-4)=12  f(12)=f(x^3 +4)=1−4x  12=x^3 +4x⇒x=2  f(12)=1−4(2)  f(12)=−7  f(h(−4))=−7

$${y}=\mathrm{3}^{{x}} +\frac{\mathrm{1}}{\mathrm{3}^{{x}} }\Rightarrow{y}^{\mathrm{2}} =\mathrm{9}^{{x}} +\frac{\mathrm{1}}{\mathrm{9}^{{x}} }+\mathrm{2} \\ $$$${h}\left({y}\right)={y}^{\mathrm{2}} −\mathrm{4} \\ $$$${h}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{4} \\ $$$${foh} \\ $$$$\begin{pmatrix}{\Re}\\{}\end{pmatrix}\:\overset{\:\:\curvearrowright} {{h}}\:\:\begin{pmatrix}{\left[-\mathrm{4},\overset{} {+\infty}\right]}\\{}\end{pmatrix}\:\:\overset{\curvearrowright} {{f}}\:\:\begin{pmatrix}{\left[-\mathrm{7},+\infty\right]}\\{}\end{pmatrix} \\ $$$${f}\left({h}\left(−\mathrm{4}\right)\right)= \\ $$$${h}\left(-\mathrm{4}\right)=\mathrm{12} \\ $$$${f}\left(\mathrm{12}\right)={f}\left({x}^{\mathrm{3}} +\mathrm{4}\right)=\mathrm{1}−\mathrm{4}{x} \\ $$$$\mathrm{12}={x}^{\mathrm{3}} +\mathrm{4}{x}\Rightarrow{x}=\mathrm{2} \\ $$$${f}\left(\mathrm{12}\right)=\mathrm{1}−\mathrm{4}\left(\mathrm{2}\right) \\ $$$${f}\left(\mathrm{12}\right)=−\mathrm{7} \\ $$$${f}\left({h}\left(−\mathrm{4}\right)\right)=−\mathrm{7} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com