Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 188310 by normans last updated on 27/Feb/23

Commented by normans last updated on 27/Feb/23

yellow lenght(x)??

$${yellow}\:{lenght}\left({x}\right)?? \\ $$

Answered by HeferH last updated on 27/Feb/23

15

$$\mathrm{15} \\ $$

Answered by mr W last updated on 27/Feb/23

Commented by mr W last updated on 27/Feb/23

y_1 +z=y_2 +x  ⇒y_2 =y_1 +z−x  ((zh)/y_1 )=2h+((xh)/y_2 )  ⇒(z/y_1 )=2+(x/y_2 )  ⇒zy_2 =2y_1 y_2 +xy_1   ⇒z(y_1 +z−x)=2y_1 (y_1 +z−x)+xy_1   ⇒2y_1 ^2 +(z−x)y_1 −(z−x)z=0  ⇒y_1 =((−(z−x)+(√((z−x)^2 +8(z−x)z)))/4)  ⇒y=y_1 +y_2 =2y_1 +z−x           =(((z−x)+(√((z−x)^2 +8(z−x)z)))/2)  ⇒(√((z−x)^2 +8(z−x)z))=2y−(z−x)  ⇒(z−x)^2 +8(z−x)z=4y^2 −4y(z−x)+(z−x)^2   ⇒(z−x)(2z+y)=y^2   ⇒x=z−(y^2 /(y+2z))=15−(6^2 /(6+2×15))=14

$${y}_{\mathrm{1}} +{z}={y}_{\mathrm{2}} +{x} \\ $$$$\Rightarrow{y}_{\mathrm{2}} ={y}_{\mathrm{1}} +{z}−{x} \\ $$$$\frac{{zh}}{{y}_{\mathrm{1}} }=\mathrm{2}{h}+\frac{{xh}}{{y}_{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{z}}{{y}_{\mathrm{1}} }=\mathrm{2}+\frac{{x}}{{y}_{\mathrm{2}} } \\ $$$$\Rightarrow{zy}_{\mathrm{2}} =\mathrm{2}{y}_{\mathrm{1}} {y}_{\mathrm{2}} +{xy}_{\mathrm{1}} \\ $$$$\Rightarrow{z}\left({y}_{\mathrm{1}} +{z}−{x}\right)=\mathrm{2}{y}_{\mathrm{1}} \left({y}_{\mathrm{1}} +{z}−{x}\right)+{xy}_{\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}{y}_{\mathrm{1}} ^{\mathrm{2}} +\left({z}−{x}\right){y}_{\mathrm{1}} −\left({z}−{x}\right){z}=\mathrm{0} \\ $$$$\Rightarrow{y}_{\mathrm{1}} =\frac{−\left({z}−{x}\right)+\sqrt{\left({z}−{x}\right)^{\mathrm{2}} +\mathrm{8}\left({z}−{x}\right){z}}}{\mathrm{4}} \\ $$$$\Rightarrow{y}={y}_{\mathrm{1}} +{y}_{\mathrm{2}} =\mathrm{2}{y}_{\mathrm{1}} +{z}−{x} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\left({z}−{x}\right)+\sqrt{\left({z}−{x}\right)^{\mathrm{2}} +\mathrm{8}\left({z}−{x}\right){z}}}{\mathrm{2}} \\ $$$$\Rightarrow\sqrt{\left({z}−{x}\right)^{\mathrm{2}} +\mathrm{8}\left({z}−{x}\right){z}}=\mathrm{2}{y}−\left({z}−{x}\right) \\ $$$$\Rightarrow\left({z}−{x}\right)^{\mathrm{2}} +\mathrm{8}\left({z}−{x}\right){z}=\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{y}\left({z}−{x}\right)+\left({z}−{x}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left({z}−{x}\right)\left(\mathrm{2}{z}+{y}\right)={y}^{\mathrm{2}} \\ $$$$\Rightarrow{x}={z}−\frac{{y}^{\mathrm{2}} }{{y}+\mathrm{2}{z}}=\mathrm{15}−\frac{\mathrm{6}^{\mathrm{2}} }{\mathrm{6}+\mathrm{2}×\mathrm{15}}=\mathrm{14} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com