Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 188100 by Shrinava last updated on 25/Feb/23

Answered by a.lgnaoui last updated on 25/Feb/23

△ADC    ∡CDA=x+18;  AC=b CD=  ((sin 18)/b)=((sin (x+18))/a) ⇒(a/b)=((sin  (x+18))/(sin 18)) (1)   △ABC  BD=AC=a  BC=a+b      ((sin(x+18) )/(a+b))=((sin 18)/a)  a[sin (x+18)−sin 18]=bsin 18            (a/b)=((sin 18)/(sin (x+18)−sin 18))  (2)  (1)=(2)⇒     ((sin (x+18))/(sin 18))  =((sin 18)/(sin (x+18)−sin 18))  posons  z=sin (x+18)    sin 18=c     (z/c)  =(c/(z−c))⇒ [z^2 −cz−c^2 =0]    △=c^2 +4c    { ((z=((c±(√(c^2 +4c^2 )))/2)=((c(1+(√5) ))/2))),(( 0< z<+1)) :}  Aplication numerique:         c=sin 18=0,309016994         z=(1/2)⇒   sin (x+18)=sin (30)                      x+18=30                       [x=12]

$$\bigtriangleup{ADC}\:\:\:\:\measuredangle{CDA}={x}+\mathrm{18};\:\:{AC}={b}\:{CD}= \\ $$$$\frac{\mathrm{sin}\:\mathrm{18}}{{b}}=\frac{\mathrm{sin}\:\left({x}+\mathrm{18}\right)}{{a}}\:\Rightarrow\frac{\boldsymbol{{a}}}{\boldsymbol{{b}}}=\frac{\mathrm{sin}\:\:\left(\boldsymbol{{x}}+\mathrm{18}\right)}{\mathrm{sin}\:\mathrm{18}}\:\left(\mathrm{1}\right)\: \\ $$$$\bigtriangleup{ABC}\:\:{BD}={AC}={a}\:\:{BC}={a}+{b} \\ $$$$\:\:\:\:\frac{\mathrm{sin}\left({x}+\mathrm{18}\right)\:}{{a}+{b}}=\frac{\mathrm{sin}\:\mathrm{18}}{{a}} \\ $$$${a}\left[\mathrm{sin}\:\left({x}+\mathrm{18}\right)−\mathrm{sin}\:\mathrm{18}\right]={b}\mathrm{sin}\:\mathrm{18} \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}}{\boldsymbol{{b}}}=\frac{\mathrm{sin}\:\mathrm{18}}{\mathrm{sin}\:\left({x}+\mathrm{18}\right)−\mathrm{sin}\:\mathrm{18}}\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)=\left(\mathrm{2}\right)\Rightarrow\:\: \\ $$$$\:\frac{\mathrm{sin}\:\left({x}+\mathrm{18}\right)}{\mathrm{sin}\:\mathrm{18}}\:\:=\frac{\mathrm{sin}\:\mathrm{18}}{\mathrm{sin}\:\left({x}+\mathrm{18}\right)−\mathrm{sin}\:\mathrm{18}} \\ $$$${posons}\:\:\boldsymbol{{z}}=\mathrm{sin}\:\left(\boldsymbol{{x}}+\mathrm{18}\right)\:\:\:\:\mathrm{sin}\:\mathrm{18}=\boldsymbol{{c}} \\ $$$$\:\:\:\frac{\boldsymbol{{z}}}{\boldsymbol{{c}}}\:\:=\frac{\boldsymbol{{c}}}{\boldsymbol{{z}}−\boldsymbol{{c}}}\Rightarrow\:\left[\boldsymbol{{z}}^{\mathrm{2}} −\boldsymbol{{cz}}−\boldsymbol{{c}}^{\mathrm{2}} =\mathrm{0}\right] \\ $$$$\:\:\bigtriangleup={c}^{\mathrm{2}} +\mathrm{4}{c}\:\:\:\begin{cases}{\boldsymbol{{z}}=\frac{\boldsymbol{{c}}\pm\sqrt{{c}^{\mathrm{2}} +\mathrm{4}{c}^{\mathrm{2}} }}{\mathrm{2}}=\frac{{c}\left(\mathrm{1}+\sqrt{\mathrm{5}}\:\right)}{\mathrm{2}}}\\{\:\mathrm{0}<\:\boldsymbol{{z}}<+\mathrm{1}}\end{cases} \\ $$$$\boldsymbol{{A}}{plication}\:{numerique}: \\ $$$$\:\:\:\:\:\:\:{c}=\mathrm{sin}\:\mathrm{18}=\mathrm{0},\mathrm{309016994} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{z}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\:\:\:\mathrm{sin}\:\left({x}+\mathrm{18}\right)=\mathrm{sin}\:\left(\mathrm{30}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+\mathrm{18}=\mathrm{30} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{{x}}=\mathrm{12}\right]\:\:\:\:\:\:\: \\ $$

Commented by a.lgnaoui last updated on 25/Feb/23

Commented by Shrinava last updated on 25/Feb/23

cool dear professor thank you

$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by a.lgnaoui last updated on 26/Feb/23

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Answered by infinityaction last updated on 26/Feb/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com