Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 188016 by Rupesh123 last updated on 24/Feb/23

Answered by aleks041103 last updated on 24/Feb/23

f=(x^3 +y^2 )^(1/2)   df=(∂f/∂x)dx+(∂f/∂y)dy=  =((3x^2 )/(2(√(x^3 +y^2 ))))dx+(y/( (√(x^3 +y^2 ))))dy=  =(1/f)((3/2)x^2 dx+ydy)=df  f(0.94,2.98)=  =f(1,3)+f(0.94,2.98)−f(1,3)≈f(1,3)+df  df=(1/(f(1,3)))(((3×1^2 ×(−0.06))/2)+3×(−0.02))=  =(1/( (√(1^3 +3^2 ))))(−0.09−0.06)=−((0.15)/( (√(10))))  ⇒f(0.94,2.98)≈(√(10))−((0.15)/( (√(10))))=0.985(√(10))  ⇒f(0.94,2.98)≈0.985(√(10))

$${f}=\left({x}^{\mathrm{3}} +{y}^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} \\ $$$${df}=\frac{\partial{f}}{\partial{x}}{dx}+\frac{\partial{f}}{\partial{y}}{dy}= \\ $$$$=\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{{x}^{\mathrm{3}} +{y}^{\mathrm{2}} }}{dx}+\frac{{y}}{\:\sqrt{{x}^{\mathrm{3}} +{y}^{\mathrm{2}} }}{dy}= \\ $$$$=\frac{\mathrm{1}}{{f}}\left(\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} {dx}+{ydy}\right)={df} \\ $$$${f}\left(\mathrm{0}.\mathrm{94},\mathrm{2}.\mathrm{98}\right)= \\ $$$$={f}\left(\mathrm{1},\mathrm{3}\right)+{f}\left(\mathrm{0}.\mathrm{94},\mathrm{2}.\mathrm{98}\right)−{f}\left(\mathrm{1},\mathrm{3}\right)\approx{f}\left(\mathrm{1},\mathrm{3}\right)+{df} \\ $$$${df}=\frac{\mathrm{1}}{{f}\left(\mathrm{1},\mathrm{3}\right)}\left(\frac{\mathrm{3}×\mathrm{1}^{\mathrm{2}} ×\left(−\mathrm{0}.\mathrm{06}\right)}{\mathrm{2}}+\mathrm{3}×\left(−\mathrm{0}.\mathrm{02}\right)\right)= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}^{\mathrm{3}} +\mathrm{3}^{\mathrm{2}} }}\left(−\mathrm{0}.\mathrm{09}−\mathrm{0}.\mathrm{06}\right)=−\frac{\mathrm{0}.\mathrm{15}}{\:\sqrt{\mathrm{10}}} \\ $$$$\Rightarrow{f}\left(\mathrm{0}.\mathrm{94},\mathrm{2}.\mathrm{98}\right)\approx\sqrt{\mathrm{10}}−\frac{\mathrm{0}.\mathrm{15}}{\:\sqrt{\mathrm{10}}}=\mathrm{0}.\mathrm{985}\sqrt{\mathrm{10}} \\ $$$$\Rightarrow{f}\left(\mathrm{0}.\mathrm{94},\mathrm{2}.\mathrm{98}\right)\approx\mathrm{0}.\mathrm{985}\sqrt{\mathrm{10}} \\ $$

Commented by Rupesh123 last updated on 24/Feb/23

df = # dx + # dy is form of the answer Your answer should be in the form. So please check your answer for the df. Your second answer is correct

Terms of Service

Privacy Policy

Contact: info@tinkutara.com