Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 187953 by Mingma last updated on 24/Feb/23

Answered by som(math1967) last updated on 24/Feb/23

△AOB=△AOC=△AOC=(1/3)△ABC  =(1/3)×48=16cm^2   △AOM=(1/2)△AOB=8cm^2   [OM is median of△AOB]  △AOK=(1/2)△AOC=8cm^2   S_(AMOK) =△AOM+△AOK=8+8=16cm^2

$$\bigtriangleup{AOB}=\bigtriangleup{AOC}=\bigtriangleup{AOC}=\frac{\mathrm{1}}{\mathrm{3}}\bigtriangleup{ABC} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{48}=\mathrm{16}{cm}^{\mathrm{2}} \\ $$$$\bigtriangleup{AOM}=\frac{\mathrm{1}}{\mathrm{2}}\bigtriangleup{AOB}=\mathrm{8}{cm}^{\mathrm{2}} \\ $$$$\left[{OM}\:{is}\:{median}\:{of}\bigtriangleup{AOB}\right] \\ $$$$\bigtriangleup{AOK}=\frac{\mathrm{1}}{\mathrm{2}}\bigtriangleup{AOC}=\mathrm{8}{cm}^{\mathrm{2}} \\ $$$${S}_{{AMOK}} =\bigtriangleup{AOM}+\bigtriangleup{AOK}=\mathrm{8}+\mathrm{8}=\mathrm{16}{cm}^{\mathrm{2}} \\ $$

Commented by som(math1967) last updated on 24/Feb/23

Commented by Mingma last updated on 24/Feb/23

Very nice, sir!

Answered by HeferH last updated on 24/Feb/23

2((S_(ABC) /6)) = S_(AMOK)    S_(AMOK ) = 16cm^2

$$\mathrm{2}\left(\frac{{S}_{{ABC}} }{\mathrm{6}}\right)\:=\:{S}_{{AMOK}} \\ $$$$\:{S}_{{AMOK}\:} =\:\mathrm{16}{cm}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com