Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187186 by 073 last updated on 14/Feb/23

Commented by 073 last updated on 14/Feb/23

please solution??

$$\mathrm{please}\:\mathrm{solution}?? \\ $$

Commented by Rasheed.Sindhi last updated on 15/Feb/23

k=4 (please confirm the answer)

$$\mathrm{k}=\mathrm{4}\:\left(\mathrm{please}\:\mathrm{confirm}\:\mathrm{the}\:\mathrm{answer}\right) \\ $$

Commented by mr W last updated on 15/Feb/23

k=4 is correct.

$${k}=\mathrm{4}\:{is}\:{correct}. \\ $$

Commented by Rasheed.Sindhi last updated on 16/Feb/23

sir mr W, when you have some leisure  please see my answer to Q#186966  for its health!

$$\boldsymbol{{sir}}\:{mr}\:{W},\:{when}\:{you}\:{have}\:{some}\:{leisure} \\ $$$${please}\:{see}\:{my}\:{answer}\:{to}\:{Q}#\mathrm{186966} \\ $$$${for}\:{its}\:{health}! \\ $$

Commented by 073 last updated on 16/Feb/23

thanks

$$\mathrm{thanks} \\ $$

Commented by 073 last updated on 16/Feb/23

thanks

$$\mathrm{thanks} \\ $$

Answered by Rasheed.Sindhi last updated on 15/Feb/23

 determinant ((★,1,2,3,4,5),(1,5,1,2,3,4),(2,1,2,3,4,5),(3,2,3,4,5,1),(4,3,4,5,1,2),(5,4,5,1,2,3))  A={1,2,3,4,5}  x★e=x ∀x∈A⇒e=2  1^(−1) =3   [∵ 1★3=2]  2^(−1) =2   [∵ 2★2=2]  3^(−1) =1    [∵ 3★1=2]  4^(−1) =5    [∵ 4★5=2]  5^(−1) =4   [∵ 5★4=2]    (2★k)^(−1) ★5=3  k^(−1) ★5=3   [∵2★k=k]  k^(−1) ★5★5^(−1) =3★5^(−1)   k^(−1) ★(5★5^(−1) )=3★4  [∵5^(−1) =4]  k^(−1) ★2=3★4     [∵5★5^(−1) =2]  k^(−1) =5     [∵ k^(−1) ★2=k^(−1) ]  k=4

$$\begin{array}{|c|c|c|c|c|c|}{\bigstar}&\hline{\mathrm{1}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}&\hline{\mathrm{5}}\\{\mathrm{1}}&\hline{\mathrm{5}}&\hline{\mathrm{1}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}\\{\mathrm{2}}&\hline{\mathrm{1}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}&\hline{\mathrm{5}}\\{\mathrm{3}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}&\hline{\mathrm{5}}&\hline{\mathrm{1}}\\{\mathrm{4}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}&\hline{\mathrm{5}}&\hline{\mathrm{1}}&\hline{\mathrm{2}}\\{\mathrm{5}}&\hline{\mathrm{4}}&\hline{\mathrm{5}}&\hline{\mathrm{1}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}\\\hline\end{array} \\ $$$$\mathrm{A}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5}\right\} \\ $$$$\mathrm{x}\bigstar\mathrm{e}=\mathrm{x}\:\forall\mathrm{x}\in\mathrm{A}\Rightarrow\mathrm{e}=\mathrm{2} \\ $$$$\mathrm{1}^{−\mathrm{1}} =\mathrm{3}\:\:\:\left[\because\:\mathrm{1}\bigstar\mathrm{3}=\mathrm{2}\right] \\ $$$$\mathrm{2}^{−\mathrm{1}} =\mathrm{2}\:\:\:\left[\because\:\mathrm{2}\bigstar\mathrm{2}=\mathrm{2}\right] \\ $$$$\mathrm{3}^{−\mathrm{1}} =\mathrm{1}\:\:\:\:\left[\because\:\mathrm{3}\bigstar\mathrm{1}=\mathrm{2}\right] \\ $$$$\mathrm{4}^{−\mathrm{1}} =\mathrm{5}\:\:\:\:\left[\because\:\mathrm{4}\bigstar\mathrm{5}=\mathrm{2}\right] \\ $$$$\mathrm{5}^{−\mathrm{1}} =\mathrm{4}\:\:\:\left[\because\:\mathrm{5}\bigstar\mathrm{4}=\mathrm{2}\right] \\ $$$$ \\ $$$$\left(\mathrm{2}\bigstar\mathrm{k}\right)^{−\mathrm{1}} \bigstar\mathrm{5}=\mathrm{3} \\ $$$$\mathrm{k}^{−\mathrm{1}} \bigstar\mathrm{5}=\mathrm{3}\:\:\:\left[\because\mathrm{2}\bigstar\mathrm{k}=\mathrm{k}\right] \\ $$$$\mathrm{k}^{−\mathrm{1}} \bigstar\mathrm{5}\bigstar\mathrm{5}^{−\mathrm{1}} =\mathrm{3}\bigstar\mathrm{5}^{−\mathrm{1}} \\ $$$$\mathrm{k}^{−\mathrm{1}} \bigstar\left(\mathrm{5}\bigstar\mathrm{5}^{−\mathrm{1}} \right)=\mathrm{3}\bigstar\mathrm{4}\:\:\left[\because\mathrm{5}^{−\mathrm{1}} =\mathrm{4}\right] \\ $$$$\mathrm{k}^{−\mathrm{1}} \bigstar\mathrm{2}=\mathrm{3}\bigstar\mathrm{4}\:\:\:\:\:\left[\because\mathrm{5}\bigstar\mathrm{5}^{−\mathrm{1}} =\mathrm{2}\right] \\ $$$$\mathrm{k}^{−\mathrm{1}} =\mathrm{5}\:\:\:\:\:\left[\because\:\mathrm{k}^{−\mathrm{1}} \bigstar\mathrm{2}=\mathrm{k}^{−\mathrm{1}} \right] \\ $$$$\mathrm{k}=\mathrm{4} \\ $$

Commented by 073 last updated on 16/Feb/23

thanks alot sir

$$\mathrm{thanks}\:\mathrm{alot}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 15/Feb/23

x∗e=x ⇒e=2  x∗x^(−1) =e=2 ⇒1^(−1) =3, 2^(−1) =2, 3^(−1) =1, 4^(−1) =5, 5^(−1) =4  5∗5=3 ⇒(2∗k)^(−1) =5 ⇒2∗k=4 ⇒k=4 ✓

$${x}\ast{e}={x}\:\Rightarrow{e}=\mathrm{2} \\ $$$${x}\ast{x}^{−\mathrm{1}} ={e}=\mathrm{2}\:\Rightarrow\mathrm{1}^{−\mathrm{1}} =\mathrm{3},\:\mathrm{2}^{−\mathrm{1}} =\mathrm{2},\:\mathrm{3}^{−\mathrm{1}} =\mathrm{1},\:\mathrm{4}^{−\mathrm{1}} =\mathrm{5},\:\mathrm{5}^{−\mathrm{1}} =\mathrm{4} \\ $$$$\mathrm{5}\ast\mathrm{5}=\mathrm{3}\:\Rightarrow\left(\mathrm{2}\ast{k}\right)^{−\mathrm{1}} =\mathrm{5}\:\Rightarrow\mathrm{2}\ast{k}=\mathrm{4}\:\Rightarrow{k}=\mathrm{4}\:\checkmark \\ $$

Commented by 073 last updated on 16/Feb/23

nice solution

$$\mathrm{nice}\:\mathrm{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com