Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 186821 by yaslm last updated on 10/Feb/23

Answered by CElcedricjunior last updated on 11/Feb/23

★lim_(x;y→0) ((sin(x^2 +y^2 ))/(x^2 +y))■Moivre  posons x^2 +y^2 =A  qd:x;y−>0 A−>0  <=>lim_(A→0) ((sinA)/A)=1  ★lim_(x;y→∞) ((sin(x^2 +y^2 ))/(x^2 +y^2 ))≈lim_(x→∞) ((sinx)/x)=0  ★celebre cedric junior

$$\bigstar\underset{{x};\boldsymbol{{y}}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)}{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}}\blacksquare\boldsymbol{{M}}{oivre} \\ $$$$\boldsymbol{{posons}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{A}} \\ $$$$\boldsymbol{{qd}}:\boldsymbol{{x}};\boldsymbol{{y}}−>\mathrm{0}\:\boldsymbol{{A}}−>\mathrm{0} \\ $$$$<=>\underset{{A}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{sinA}}}{{A}}=\mathrm{1} \\ $$$$\bigstar\underset{{x};\boldsymbol{{y}}\rightarrow\infty} {\mathrm{lim}}\frac{\boldsymbol{{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)}{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }\approx\underset{\boldsymbol{{x}}\rightarrow\infty} {\mathrm{lim}}\frac{\boldsymbol{{sinx}}}{\boldsymbol{{x}}}=\mathrm{0}\:\:\bigstar\boldsymbol{{celebre}}\:\boldsymbol{{cedric}}\:\boldsymbol{{junior}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com