Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 186782 by Rupesh123 last updated on 10/Feb/23

Answered by HeferH last updated on 10/Feb/23

 ((121A)/(60))−((2S)/3) + ((121A)/(40))−S = ((17A)/8)   ((121A)/(24))−((5S)/3) = ((17A)/8)   ((121A)/(24))−((17∙3A)/(8∙3))= ((5S)/3)   ((70A)/(24))= ((5S)/3)   ((70A∙3)/(24∙5)) = S   S = (7/4)A   A=  (( 96)/(17))    S = (7/4)∙((12∙8)/(17)) = ((7∙24)/(17)) = ((168)/(17))

$$\:\frac{\mathrm{121}{A}}{\mathrm{60}}−\frac{\mathrm{2}{S}}{\mathrm{3}}\:+\:\frac{\mathrm{121}{A}}{\mathrm{40}}−{S}\:=\:\frac{\mathrm{17}{A}}{\mathrm{8}} \\ $$$$\:\frac{\mathrm{121}{A}}{\mathrm{24}}−\frac{\mathrm{5}{S}}{\mathrm{3}}\:=\:\frac{\mathrm{17}{A}}{\mathrm{8}} \\ $$$$\:\frac{\mathrm{121}{A}}{\mathrm{24}}−\frac{\mathrm{17}\centerdot\mathrm{3}{A}}{\mathrm{8}\centerdot\mathrm{3}}=\:\frac{\mathrm{5}{S}}{\mathrm{3}} \\ $$$$\:\frac{\mathrm{70}{A}}{\mathrm{24}}=\:\frac{\mathrm{5}{S}}{\mathrm{3}} \\ $$$$\:\frac{\mathrm{70}{A}\centerdot\mathrm{3}}{\mathrm{24}\centerdot\mathrm{5}}\:=\:{S} \\ $$$$\:{S}\:=\:\frac{\mathrm{7}}{\mathrm{4}}{A} \\ $$$$\:{A}=\:\:\frac{\:\mathrm{96}}{\mathrm{17}} \\ $$$$\:\:{S}\:=\:\frac{\mathrm{7}}{\mathrm{4}}\centerdot\frac{\mathrm{12}\centerdot\mathrm{8}}{\mathrm{17}}\:=\:\frac{\mathrm{7}\centerdot\mathrm{24}}{\mathrm{17}}\:=\:\frac{\mathrm{168}}{\mathrm{17}} \\ $$

Commented by HeferH last updated on 10/Feb/23

Answered by nikif99 last updated on 10/Feb/23

A_(ABC) =36 (Heron)  cos A=((AB^2 +AC^2 −BC^2 )/(2∙(AB)(AC)))=−(3/5) ⇒sin A=(4/5)  Similarly, sin B=((15)/(17)) and sin C=((77)/(85))  A_(AMP) =(1/2)(AM)(AP) sin A=7.2  A_(BMN) =((192)/(17)) and A_(CNP) =((648)/(85))  S=A_(ABC) −(A_(AMP) +A_(BMN) +A_(CNP) )=((168)/(17))

$${A}_{{ABC}} =\mathrm{36}\:\left({Heron}\right) \\ $$$$\mathrm{cos}\:{A}=\frac{{AB}^{\mathrm{2}} +{AC}^{\mathrm{2}} −{BC}^{\mathrm{2}} }{\mathrm{2}\centerdot\left({AB}\right)\left({AC}\right)}=−\frac{\mathrm{3}}{\mathrm{5}}\:\Rightarrow\mathrm{sin}\:{A}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$${Similarly},\:\mathrm{sin}\:{B}=\frac{\mathrm{15}}{\mathrm{17}}\:{and}\:\mathrm{sin}\:{C}=\frac{\mathrm{77}}{\mathrm{85}} \\ $$$${A}_{{AMP}} =\frac{\mathrm{1}}{\mathrm{2}}\left({AM}\right)\left({AP}\right)\:\mathrm{sin}\:{A}=\mathrm{7}.\mathrm{2} \\ $$$${A}_{{BMN}} =\frac{\mathrm{192}}{\mathrm{17}}\:{and}\:{A}_{{CNP}} =\frac{\mathrm{648}}{\mathrm{85}} \\ $$$${S}={A}_{{ABC}} −\left({A}_{{AMP}} +{A}_{{BMN}} +{A}_{{CNP}} \right)=\frac{\mathrm{168}}{\mathrm{17}} \\ $$

Answered by mr W last updated on 10/Feb/23

Commented by mr W last updated on 10/Feb/23

Δ=area of ΔABC  Δ=((√((9+17+10)(−9+17+10)(9−17+10)(9+17−10)))/4)      =36  (A/Δ)=((3×6)/(9×10))=(1/5)  (B/Δ)=((6×8)/(9×17))=((16)/(51))  (C/Δ)=((9×4)/(17×10))=((18)/(85))  ((S+A+B+C)/Δ)=(Δ/Δ)=1  ⇒(S/Δ)=1−(1/5)−((16)/(51))−((18)/(85))=((14)/(51))  ⇒S=((14×36)/(51))=((168)/(17))

$$\Delta={area}\:{of}\:\Delta{ABC} \\ $$$$\Delta=\frac{\sqrt{\left(\mathrm{9}+\mathrm{17}+\mathrm{10}\right)\left(−\mathrm{9}+\mathrm{17}+\mathrm{10}\right)\left(\mathrm{9}−\mathrm{17}+\mathrm{10}\right)\left(\mathrm{9}+\mathrm{17}−\mathrm{10}\right)}}{\mathrm{4}} \\ $$$$\:\:\:\:=\mathrm{36} \\ $$$$\frac{{A}}{\Delta}=\frac{\mathrm{3}×\mathrm{6}}{\mathrm{9}×\mathrm{10}}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\frac{{B}}{\Delta}=\frac{\mathrm{6}×\mathrm{8}}{\mathrm{9}×\mathrm{17}}=\frac{\mathrm{16}}{\mathrm{51}} \\ $$$$\frac{{C}}{\Delta}=\frac{\mathrm{9}×\mathrm{4}}{\mathrm{17}×\mathrm{10}}=\frac{\mathrm{18}}{\mathrm{85}} \\ $$$$\frac{{S}+{A}+{B}+{C}}{\Delta}=\frac{\Delta}{\Delta}=\mathrm{1} \\ $$$$\Rightarrow\frac{{S}}{\Delta}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{16}}{\mathrm{51}}−\frac{\mathrm{18}}{\mathrm{85}}=\frac{\mathrm{14}}{\mathrm{51}} \\ $$$$\Rightarrow{S}=\frac{\mathrm{14}×\mathrm{36}}{\mathrm{51}}=\frac{\mathrm{168}}{\mathrm{17}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com