Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 186637 by Mingma last updated on 07/Feb/23

Answered by mr W last updated on 07/Feb/23

=∫_0 ^(π/4) (dx/(2−(1−2 sin^2  x)))  =∫_0 ^(π/4) (dx/(2−cos 2x))  =(1/2)∫_0 ^(π/2) (dx/(2−cos x))  =(1/( (√3)))[tan^(−1) ((√3) tan (x/2))]_0 ^(π/2)   =(π/( 3(√3)))

$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\mathrm{2}−\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}\right)} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\mathrm{2}−\mathrm{cos}\:\mathrm{2}{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{2}−\mathrm{cos}\:{x}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\left[\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{3}}\:\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\:\mathrm{3}\sqrt{\mathrm{3}}} \\ $$

Answered by ARUNG_Brandon_MBU last updated on 08/Feb/23

I=∫_0 ^(π/4) (dx/(1+2sin^2 x))=∫_0 ^(π/4) ((sec^2 x)/(sec^2 x+2tan^2 x))dx    =∫_0 ^(π/4) ((sec^2 x)/(3tan^2 x+1))dx=∫_0 ^1 (dt/(3t^2 +1))    =(1/( (√3)))[arctan((√3)t)]_0 ^1 =(π/(3(√3)))

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\mathrm{1}+\mathrm{2sin}^{\mathrm{2}} {x}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{sec}^{\mathrm{2}} {x}}{\mathrm{sec}^{\mathrm{2}} {x}+\mathrm{2tan}^{\mathrm{2}} {x}}{dx} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{sec}^{\mathrm{2}} {x}}{\mathrm{3tan}^{\mathrm{2}} {x}+\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\mathrm{3}{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\left[\mathrm{arctan}\left(\sqrt{\mathrm{3}}{t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com