Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 186026 by Michaelfaraday last updated on 31/Jan/23

Answered by mr W last updated on 31/Jan/23

(b)  T_(A−B) =μm_A g=0.35×25=8.75 N ✓  T_(B−C) =μm_A g+μm_B g cos θ+m_B g sin θ  =(0.35+0.35×(4/5)+(3/5))×25=30.75 N  (c)  m_C g=T_(B−C) =30.75 N ✓  (m_C /m_B )=((30.75)/(25))=1.23  (d)  (m_B +m_C )a=m_C g−m_B g sin θ−μm_B g cos θ+T_(A−B)   (m_B +m_C )a=m_C g−m_B g sin θ−μm_B g cos θ+μm_A g  a=(((1.23−sin θ−μ cos θ+μ)g)/(1+1.23))    =(1/(2.23))(1.23−(3/5)−0.35×(4/5)+0.35)×10    ≈3.139 m/s^2  ✓

$$\left({b}\right) \\ $$$${T}_{{A}−{B}} =\mu{m}_{{A}} {g}=\mathrm{0}.\mathrm{35}×\mathrm{25}=\mathrm{8}.\mathrm{75}\:{N}\:\checkmark \\ $$$${T}_{{B}−{C}} =\mu{m}_{{A}} {g}+\mu{m}_{{B}} {g}\:\mathrm{cos}\:\theta+{m}_{{B}} {g}\:\mathrm{sin}\:\theta \\ $$$$=\left(\mathrm{0}.\mathrm{35}+\mathrm{0}.\mathrm{35}×\frac{\mathrm{4}}{\mathrm{5}}+\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{25}=\mathrm{30}.\mathrm{75}\:{N} \\ $$$$\left({c}\right) \\ $$$${m}_{{C}} {g}={T}_{{B}−{C}} =\mathrm{30}.\mathrm{75}\:{N}\:\checkmark \\ $$$$\frac{{m}_{{C}} }{{m}_{{B}} }=\frac{\mathrm{30}.\mathrm{75}}{\mathrm{25}}=\mathrm{1}.\mathrm{23} \\ $$$$\left({d}\right) \\ $$$$\left({m}_{{B}} +{m}_{{C}} \right){a}={m}_{{C}} {g}−{m}_{{B}} {g}\:\mathrm{sin}\:\theta−\mu{m}_{{B}} {g}\:\mathrm{cos}\:\theta+{T}_{{A}−{B}} \\ $$$$\left({m}_{{B}} +{m}_{{C}} \right){a}={m}_{{C}} {g}−{m}_{{B}} {g}\:\mathrm{sin}\:\theta−\mu{m}_{{B}} {g}\:\mathrm{cos}\:\theta+\mu{m}_{{A}} {g} \\ $$$${a}=\frac{\left(\mathrm{1}.\mathrm{23}−\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta+\mu\right){g}}{\mathrm{1}+\mathrm{1}.\mathrm{23}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}.\mathrm{23}}\left(\mathrm{1}.\mathrm{23}−\frac{\mathrm{3}}{\mathrm{5}}−\mathrm{0}.\mathrm{35}×\frac{\mathrm{4}}{\mathrm{5}}+\mathrm{0}.\mathrm{35}\right)×\mathrm{10} \\ $$$$\:\:\approx\mathrm{3}.\mathrm{139}\:{m}/{s}^{\mathrm{2}} \:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com