Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 184352 by cherokeesay last updated on 05/Jan/23

Answered by som(math1967) last updated on 05/Jan/23

△ABC∼△ACD   ⇒x^2 =6×4⇒x=(√(24))=2(√6)  BC=(√(4×2))=2(√2)  △AFE∼△ABC   ((x+y)/4)=(x/(2(√2)))  2(√6)+y=4×((2(√6))/(2(√2)))    y=((4(√6)−2(√(12)))/( (√2)))=((4(√6)−4(√3))/( (√2)))    (x/y)=((2(√6)×(√2))/(4((√6)−(√3))))=((√3)/( (√3)((√2)−1)))=(√2)+1

$$\bigtriangleup{ABC}\sim\bigtriangleup{ACD} \\ $$$$\:\Rightarrow{x}^{\mathrm{2}} =\mathrm{6}×\mathrm{4}\Rightarrow{x}=\sqrt{\mathrm{24}}=\mathrm{2}\sqrt{\mathrm{6}} \\ $$$${BC}=\sqrt{\mathrm{4}×\mathrm{2}}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\bigtriangleup{AFE}\sim\bigtriangleup{ABC} \\ $$$$\:\frac{{x}+{y}}{\mathrm{4}}=\frac{{x}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{2}\sqrt{\mathrm{6}}+{y}=\mathrm{4}×\frac{\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\:\:{y}=\frac{\mathrm{4}\sqrt{\mathrm{6}}−\mathrm{2}\sqrt{\mathrm{12}}}{\:\sqrt{\mathrm{2}}}=\frac{\mathrm{4}\sqrt{\mathrm{6}}−\mathrm{4}\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\:\frac{{x}}{{y}}=\frac{\mathrm{2}\sqrt{\mathrm{6}}×\sqrt{\mathrm{2}}}{\mathrm{4}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}\right)}=\frac{\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}=\sqrt{\mathrm{2}}+\mathrm{1} \\ $$

Commented by som(math1967) last updated on 05/Jan/23

Commented by cherokeesay last updated on 05/Jan/23

nice ! thank you sir.

$${nice}\:!\:{thank}\:{you}\:{sir}. \\ $$

Answered by mr W last updated on 05/Jan/23

Commented by mr W last updated on 05/Jan/23

h^2 =4×2 ⇒h=2(√2)  k=4−h=4−2(√2)  (x/y)=(h/k)=((2(√2))/(4−2(√2)))=(1/( (√2)−1))=(√2)+1

$${h}^{\mathrm{2}} =\mathrm{4}×\mathrm{2}\:\Rightarrow{h}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${k}=\mathrm{4}−{h}=\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\frac{{x}}{{y}}=\frac{{h}}{{k}}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}=\sqrt{\mathrm{2}}+\mathrm{1} \\ $$

Commented by cherokeesay last updated on 05/Jan/23

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Answered by HeferH last updated on 05/Jan/23

h^2 = 4∙2 ⇒ h = 2(√2)   (4/(4−2(√2))) = ((x + y)/y) (similar triangles)   (2/(2 − (√2)))  − 1= (x/y) ⇒    (x/y) = ((√2)/(2−(√2))) =(((2+(√2))(√2))/2) = ((2(√2) + 2)/2) =1 + (√2)

$${h}^{\mathrm{2}} =\:\mathrm{4}\centerdot\mathrm{2}\:\Rightarrow\:{h}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\:\frac{\mathrm{4}}{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}\:=\:\frac{{x}\:+\:{y}}{{y}}\:\left({similar}\:{triangles}\right) \\ $$$$\:\frac{\mathrm{2}}{\mathrm{2}\:−\:\sqrt{\mathrm{2}}}\:\:−\:\mathrm{1}=\:\frac{{x}}{{y}}\:\Rightarrow\: \\ $$$$\:\frac{{x}}{{y}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}−\sqrt{\mathrm{2}}}\:=\frac{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{2}}{\mathrm{2}}\:=\mathrm{1}\:+\:\sqrt{\mathrm{2}}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com