Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 184041 by Acem last updated on 02/Jan/23

Answered by HeferH last updated on 02/Jan/23

TN^(⌢)  = (π/3) = ((180°)/3) = 60°  ⇒ ∠TAN = ((TN^(⌢) )/2) = 30°   ∠AOT = 120° (△AOT isosceles)    ∠ATC = ((AT^(⌢) )/2) = 60  ⇒ ∠ACT = 90°    MTCA is cyclic,   the center would be the mid point of AT

$$\overset{\frown} {{TN}}\:=\:\frac{\pi}{\mathrm{3}}\:=\:\frac{\mathrm{180}°}{\mathrm{3}}\:=\:\mathrm{60}°\:\:\Rightarrow\:\angle{TAN}\:=\:\frac{\overset{\frown} {{TN}}}{\mathrm{2}}\:=\:\mathrm{30}° \\ $$$$\:\angle{AOT}\:=\:\mathrm{120}°\:\left(\bigtriangleup{AOT}\:{isosceles}\right)\: \\ $$$$\:\angle{ATC}\:=\:\frac{\overset{\frown} {{AT}}}{\mathrm{2}}\:=\:\mathrm{60}\:\:\Rightarrow\:\angle{ACT}\:=\:\mathrm{90}°\: \\ $$$$\:{MTCA}\:{is}\:{cyclic}, \\ $$$$\:{the}\:{center}\:{would}\:{be}\:{the}\:{mid}\:{point}\:{of}\:{AT} \\ $$

Answered by mr W last updated on 02/Jan/23

Commented by mr W last updated on 02/Jan/23

∠TAN=((TN^(⌢) )/2)=30°  ∠BOT=2∠OAT=60°=∠OAC  ⇒AC//OT  ⇒AC⊥BC  ⇒∠ACB=90°=∠AMT  ⇒ACTM are cyclic, lie on a circle       with AT as diameter. Midpoint       of AT is the center.

$$\angle{TAN}=\frac{\overset{\frown} {{TN}}}{\mathrm{2}}=\mathrm{30}° \\ $$$$\angle{BOT}=\mathrm{2}\angle{OAT}=\mathrm{60}°=\angle{OAC} \\ $$$$\Rightarrow{AC}//{OT} \\ $$$$\Rightarrow{AC}\bot{BC} \\ $$$$\Rightarrow\angle{ACB}=\mathrm{90}°=\angle{AMT} \\ $$$$\Rightarrow{ACTM}\:{are}\:{cyclic},\:{lie}\:{on}\:{a}\:{circle} \\ $$$$\:\:\:\:\:{with}\:{AT}\:{as}\:{diameter}.\:{Midpoint} \\ $$$$\:\:\:\:\:{of}\:{AT}\:{is}\:{the}\:{center}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com