Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 183962 by Acem last updated on 01/Jan/23

Commented by Acem last updated on 01/Jan/23

 TB is a tangent to the circle

$$\:{TB}\:{is}\:{a}\:{tangent}\:{to}\:{the}\:{circle} \\ $$

Answered by mr W last updated on 01/Jan/23

(a)  ((√(8^2 −TM^2 ))/8)=(8/(10))  ⇒TM=((24)/5)  ON=((TM)/2)=((12)/5)  (b)  yes, with OB as diameter and  center at midpoint of OB.  radius r=((OB)/2)=((√(8^2 +3^2 ))/2)=((√(73))/2)

$$\left({a}\right) \\ $$$$\frac{\sqrt{\mathrm{8}^{\mathrm{2}} −{TM}^{\mathrm{2}} }}{\mathrm{8}}=\frac{\mathrm{8}}{\mathrm{10}} \\ $$$$\Rightarrow{TM}=\frac{\mathrm{24}}{\mathrm{5}} \\ $$$${ON}=\frac{{TM}}{\mathrm{2}}=\frac{\mathrm{12}}{\mathrm{5}} \\ $$$$\left({b}\right) \\ $$$${yes},\:{with}\:{OB}\:{as}\:{diameter}\:{and} \\ $$$${center}\:{at}\:{midpoint}\:{of}\:{OB}. \\ $$$${radius}\:{r}=\frac{{OB}}{\mathrm{2}}=\frac{\sqrt{\mathrm{8}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\sqrt{\mathrm{73}}}{\mathrm{2}} \\ $$

Commented by Acem last updated on 02/Jan/23

Thanks Sir!

$${Thanks}\:{Sir}! \\ $$

Answered by Acem last updated on 02/Jan/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com