Question Number 183845 by Michaelfaraday last updated on 30/Dec/22 | ||
Answered by MJS_new last updated on 31/Dec/22 | ||
$$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}+\mathrm{2}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}}{\:\sqrt{\mathrm{2}}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}}{{t}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{\:\sqrt{\mathrm{2}}{t}^{\mathrm{2}} −\mathrm{2}{t}+\sqrt{\mathrm{2}}}=\mathrm{2arctan}\:\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)\:= \\ $$$$=\mathrm{2arctan}\:\left({x}+\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}}\right)\:+{C} \\ $$ | ||
Answered by MJS_new last updated on 31/Dec/22 | ||
$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{\:\sqrt{\mathrm{2}}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{{t}}{dx}\right] \\ $$$$=\mathrm{2}\int\frac{{t}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt}=\mathrm{arctan}\:{t}^{\mathrm{2}} \:= \\ $$$$=\mathrm{arctan}\:\left({x}^{\mathrm{2}} +\mathrm{1}+{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right)\:+{C} \\ $$ | ||
Commented by Michaelfaraday last updated on 31/Dec/22 | ||
$${thanks}\:{sir} \\ $$ | ||