Question Number 183281 by mr W last updated on 24/Dec/22 | ||
Commented by mr W last updated on 24/Dec/22 | ||
$${find}\:{the}\:{length}\:{of}\:{AC}. \\ $$ | ||
Answered by mr W last updated on 25/Dec/22 | ||
$$\mathrm{cos}\:\alpha=\frac{{a}^{\mathrm{2}} +{q}^{\mathrm{2}} −{d}^{\mathrm{2}} }{\mathrm{2}{aq}}\:\Rightarrow\mathrm{sin}\:\alpha=\frac{\sqrt{\left[{q}^{\mathrm{2}} −\left({a}−{d}\right)^{\mathrm{2}} \right]\left[\left({a}+{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]}}{\mathrm{2}{aq}} \\ $$$$\mathrm{cos}\:\beta=\frac{{b}^{\mathrm{2}} +{q}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{bq}}\:\Rightarrow\mathrm{sin}\:\beta=\frac{\sqrt{\left[{q}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \right]\left[\left({b}+{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]}}{\mathrm{2}{bq}} \\ $$$${p}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\alpha+\beta\right) \\ $$$${p}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\left\{\frac{{a}^{\mathrm{2}} +{q}^{\mathrm{2}} −{d}^{\mathrm{2}} }{\mathrm{2}{aq}}×\frac{{b}^{\mathrm{2}} +{q}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{bq}}−\frac{\sqrt{\left[{q}^{\mathrm{2}} −\left({a}−{d}\right)^{\mathrm{2}} \right]\left[\left({a}+{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]}}{\mathrm{2}{aq}}×\frac{\sqrt{\left[{q}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \right]\left[\left({b}+{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]}}{\mathrm{2}{bq}}\right\} \\ $$$${p}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\frac{\left({a}^{\mathrm{2}} −{d}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)−\sqrt{\left[\left({a}+{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({a}−{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({b}+{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({b}−{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]}}{\mathrm{2}{q}^{\mathrm{2}} } \\ $$$${p}^{\mathrm{2}} =\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} −{q}^{\mathrm{2}} \right){q}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{d}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)+\sqrt{\left[\left({a}+{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({a}−{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({b}+{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({b}−{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]}}{\mathrm{2}{q}^{\mathrm{2}} } \\ $$$$\Rightarrow{p}=\frac{\mathrm{1}}{{q}}\sqrt{\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} −{q}^{\mathrm{2}} \right){q}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{d}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)+\sqrt{\left[\left({a}+{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({a}−{d}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({b}+{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]\left[\left({b}−{c}\right)^{\mathrm{2}} −{q}^{\mathrm{2}} \right]}}{\mathrm{2}}} \\ $$$$ \\ $$$${p}=\frac{\mathrm{1}}{\mathrm{80}}\sqrt{\frac{\left(\mathrm{60}^{\mathrm{2}} +\mathrm{78}^{\mathrm{2}} +\mathrm{50}^{\mathrm{2}} +\mathrm{100}^{\mathrm{2}} −\mathrm{80}^{\mathrm{2}} \right)×\mathrm{80}^{\mathrm{2}} −\left(\mathrm{60}^{\mathrm{2}} −\mathrm{100}^{\mathrm{2}} \right)\left(\mathrm{78}^{\mathrm{2}} −\mathrm{50}^{\mathrm{2}} \right)+\sqrt{\left[\left(\mathrm{60}+\mathrm{100}\right)^{\mathrm{2}} −\mathrm{80}^{\mathrm{2}} \right]\left[\left(\mathrm{60}−\mathrm{100}\right)^{\mathrm{2}} −\mathrm{80}^{\mathrm{2}} \right]\left[\left(\mathrm{78}+\mathrm{50}\right)^{\mathrm{2}} −\mathrm{80}^{\mathrm{2}} \right]\left[\left(\mathrm{78}−\mathrm{50}\right)^{\mathrm{2}} −\mathrm{80}^{\mathrm{2}} \right]}}{\mathrm{2}}} \\ $$$$\:\:=\mathrm{30}\sqrt{\mathrm{17}}\approx\mathrm{123}.\mathrm{693} \\ $$ | ||
Commented by manxsol last updated on 24/Dec/22 | ||
$${behold}\:{the}\:{surprise} \\ $$ | ||
Commented by manxsol last updated on 24/Dec/22 | ||
Commented by mr W last updated on 25/Dec/22 | ||
$${i}\:{can}'{t}\:{see}\:{what}\:{you}\:{meant}\:{with}\:{the} \\ $$$${surprise}.\:{you}\:{should}\:{specify}\:{what}\:{is} \\ $$$${given}\:{and}\:{what}\:{is}\:{to}\:{find}. \\ $$ | ||
Answered by Acem last updated on 24/Dec/22 | ||
Commented by manxsol last updated on 25/Dec/22 | ||
$${if}\:{we}\:{put}\:{side}\:\mathrm{78}\:{unknown}\:;\:{we}\:{have}\:{two}\:{solution}\:\mathrm{123}\:{and}\:\mathrm{50}.\:{saludos}\:{Sir}\:{Acem} \\ $$ | ||
Commented by Acem last updated on 25/Dec/22 | ||
$${Saludos}\:{para}\:{ti}\:{mi}\:{querido}\:{amigo}! \\ $$ | ||
Commented by Acem last updated on 25/Dec/22 | ||
$${My}\:{friend},\:{did}\:{you}\:{mean}\:{that}\:{the}\:{side} \\ $$$$\:{BC}\:{is}\:{unknown}? \\ $$$$\:{if}\:{not},\:{then}\:{how}\:{will}\:{we}\:{have}\:{another}\:{solution} \\ $$$$\:{such}\:{AC}\:=\:\mathrm{50}? \\ $$ | ||
Commented by Acem last updated on 25/Dec/22 | ||
$$\:{Do}\:{you}\:{mean}\:{BC}=\:\mathrm{50}?\:{how}?\:{i}\:{saw}\:{your}\:{solution} \\ $$$$\:{but}\:{BC}\:{is}\:\mathrm{78}\:{and}\:{the}\:{question}\:{is}\:{to}\:{find}\:{AC} \\ $$$$\:{Well},\:{let}\:{me}\:{know}\:{what}\:{do}\:{you}\:{mean} \\ $$ | ||