Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 183246 by cortano1 last updated on 24/Dec/22

Answered by mr W last updated on 24/Dec/22

Commented by mr W last updated on 24/Dec/22

cos α=((1^2 +(2(√2))^2 −3^2 )/(2×1×2(√2)))=0 ⇒α=90°  ⇒x=α+45°=135°

$$\mathrm{cos}\:\alpha=\frac{\mathrm{1}^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }{\mathrm{2}×\mathrm{1}×\mathrm{2}\sqrt{\mathrm{2}}}=\mathrm{0}\:\Rightarrow\alpha=\mathrm{90}° \\ $$$$\Rightarrow{x}=\alpha+\mathrm{45}°=\mathrm{135}° \\ $$

Commented by cortano1 last updated on 24/Dec/22

nice

$${nice} \\ $$

Answered by HeferH last updated on 24/Dec/22

Commented by HeferH last updated on 24/Dec/22

 3^2  = 1^2  + (2(√2))^2  ⇒ right triangle   α − 45° = 90°   α = 135°

$$\:\mathrm{3}^{\mathrm{2}} \:=\:\mathrm{1}^{\mathrm{2}} \:+\:\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:\Rightarrow\:{right}\:{triangle}\: \\ $$$$\alpha\:−\:\mathrm{45}°\:=\:\mathrm{90}° \\ $$$$\:\alpha\:=\:\mathrm{135}° \\ $$

Commented by cortano1 last updated on 24/Dec/22

great

$${great} \\ $$

Answered by SEKRET last updated on 04/Jan/23

  ABP=a       PBC=90−a    AB=BC=x         x^2 +4−4xcos(a)=1       cos(a)=((x^2 +3)/(4x))       x^2 +4 −4xsin(a) =9    sin(a) = ((x^2 −5)/(4x))      sin^2 (a)+cos^2 (a)=1     (x^2 +3)^2 +(x^2 −5)^2 =16x^2         2x^4 −4x^2 +34 − 16x^2  =      x= (√(5+2(√2)))      1^2 +2^2  −4cos(b)= 5+2(√2)     cos(b)= ((−(√2))/2)         b=135°

$$\:\:\boldsymbol{\mathrm{ABP}}=\boldsymbol{\mathrm{a}}\:\:\:\:\:\:\:\boldsymbol{\mathrm{PBC}}=\mathrm{90}−\boldsymbol{\mathrm{a}} \\ $$$$\:\:\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{BC}}=\boldsymbol{\mathrm{x}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{4}−\mathrm{4}\boldsymbol{\mathrm{xcos}}\left(\boldsymbol{\mathrm{a}}\right)=\mathrm{1}\:\:\:\:\:\:\:\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{a}}\right)=\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{3}}{\mathrm{4}\boldsymbol{\mathrm{x}}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{4}\:−\mathrm{4}\boldsymbol{\mathrm{xsin}}\left(\boldsymbol{\mathrm{a}}\right)\:=\mathrm{9}\:\:\:\:\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{a}}\right)\:=\:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{5}}{\mathrm{4}\boldsymbol{\mathrm{x}}} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{a}}\right)+\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{a}}\right)=\mathrm{1} \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} +\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{5}\right)^{\mathrm{2}} =\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{34}\:−\:\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:= \\ $$$$\:\:\:\:\boldsymbol{\mathrm{x}}=\:\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \:−\mathrm{4}\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{b}}\right)=\:\mathrm{5}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{b}}\right)=\:\frac{−\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{b}}=\mathrm{135}° \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com