Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 183162 by mnjuly1970 last updated on 21/Dec/22

Answered by aleks041103 last updated on 23/Dec/22

sin(x)=x−(x^3 /6)+o(x^3 )  ⇒−((sin(x))/x)=−1+(x^2 /6)+o(x^2 )→−1^+   −(x/(sin(x)))→−1^−   ⇒⌊−((sin(x))/x)⌋→−1  ⌊−(x/(sin(x)))⌋→−2  lim_(x→0^± ) ⌊sin(x)⌋+⌊−sin(x)⌋=⌊0^± ⌋+⌊0^∓ ⌋=  = { (0),((−1)) :}+ { ((−1)),(0) :}=−1  ⇒lim_(x→0) ((⌊−((sin(x))/x)⌋+⌊−(x/(sin(x)))⌋)/(⌊sin(x)⌋+⌊−sin(x)⌋))=((−1+(−2))/(−1))=3  lim_(x→0)  ((⌊−((sin(x))/x)⌋+⌊−(x/(sin(x)))⌋)/(⌊sin(x)⌋+⌊−sin(x)⌋)) = 3

$${sin}\left({x}\right)={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{o}\left({x}^{\mathrm{3}} \right) \\ $$$$\Rightarrow−\frac{{sin}\left({x}\right)}{{x}}=−\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{6}}+{o}\left({x}^{\mathrm{2}} \right)\rightarrow−\mathrm{1}^{+} \\ $$$$−\frac{{x}}{{sin}\left({x}\right)}\rightarrow−\mathrm{1}^{−} \\ $$$$\Rightarrow\lfloor−\frac{{sin}\left({x}\right)}{{x}}\rfloor\rightarrow−\mathrm{1} \\ $$$$\lfloor−\frac{{x}}{{sin}\left({x}\right)}\rfloor\rightarrow−\mathrm{2} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{\pm} } {{lim}}\lfloor{sin}\left({x}\right)\rfloor+\lfloor−{sin}\left({x}\right)\rfloor=\lfloor\mathrm{0}^{\pm} \rfloor+\lfloor\mathrm{0}^{\mp} \rfloor= \\ $$$$=\begin{cases}{\mathrm{0}}\\{−\mathrm{1}}\end{cases}+\begin{cases}{−\mathrm{1}}\\{\mathrm{0}}\end{cases}=−\mathrm{1} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\lfloor−\frac{{sin}\left({x}\right)}{{x}}\rfloor+\lfloor−\frac{{x}}{{sin}\left({x}\right)}\rfloor}{\lfloor{sin}\left({x}\right)\rfloor+\lfloor−{sin}\left({x}\right)\rfloor}=\frac{−\mathrm{1}+\left(−\mathrm{2}\right)}{−\mathrm{1}}=\mathrm{3} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\lfloor−\frac{{sin}\left({x}\right)}{{x}}\rfloor+\lfloor−\frac{{x}}{{sin}\left({x}\right)}\rfloor}{\lfloor{sin}\left({x}\right)\rfloor+\lfloor−{sin}\left({x}\right)\rfloor}\:=\:\mathrm{3} \\ $$

Commented by mnjuly1970 last updated on 29/Dec/22

bravo sir

$${bravo}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com