Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 18281 by aplus last updated on 17/Jul/17

Answered by Tinkutara last updated on 18/Jul/17

(1/2)∫2 sin x cos x dx = (1/2)∫sin 2x dx  = (1/2)(((−cos 2x)/2)) = ((−cos 2x)/4) + C

$$\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{2}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{sin}\:\mathrm{2}{x}\:{dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{−\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}}\right)\:=\:\frac{−\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{4}}\:+\:{C} \\ $$

Answered by mrW1 last updated on 18/Jul/17

=∫sin x d(sin x)=(1/2)sin^2  x+C

$$=\int\mathrm{sin}\:\mathrm{x}\:\mathrm{d}\left(\mathrm{sin}\:\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{\mathrm{2}} \:\mathrm{x}+\mathrm{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com