Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 182779 by Noorzai last updated on 14/Dec/22

Commented by Rasheed.Sindhi last updated on 14/Dec/22

M+L=7

$$\mathrm{M}+\mathrm{L}=\mathrm{7} \\ $$

Answered by TheSupreme last updated on 14/Dec/22

3(10K+L)=100M+10L+8  30K+3L=100M+10L+8  100M+7L−30K+8=0  mod_(10)   7L+8=_(10) 0  7L=_(10) −8=_(10) 2→L=6  100M+42−30K+8=0  10M+5−3K=0  mod_(10)   5−3K=_(10) 0  3K=5_(10)  →K=5  so 10M+5−15=0→M=1  L+M=6+1=7

$$\mathrm{3}\left(\mathrm{10}{K}+{L}\right)=\mathrm{100}{M}+\mathrm{10}{L}+\mathrm{8} \\ $$$$\mathrm{30}{K}+\mathrm{3}{L}=\mathrm{100}{M}+\mathrm{10}{L}+\mathrm{8} \\ $$$$\mathrm{100}{M}+\mathrm{7}{L}−\mathrm{30}{K}+\mathrm{8}=\mathrm{0} \\ $$$${mod}_{\mathrm{10}} \\ $$$$\mathrm{7}{L}+\mathrm{8}=_{\mathrm{10}} \mathrm{0} \\ $$$$\mathrm{7}{L}=_{\mathrm{10}} −\mathrm{8}=_{\mathrm{10}} \mathrm{2}\rightarrow{L}=\mathrm{6} \\ $$$$\mathrm{100}{M}+\mathrm{42}−\mathrm{30}{K}+\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{10}{M}+\mathrm{5}−\mathrm{3}{K}=\mathrm{0} \\ $$$${mod}_{\mathrm{10}} \\ $$$$\mathrm{5}−\mathrm{3}{K}=_{\mathrm{10}} \mathrm{0} \\ $$$$\mathrm{3}{K}=\mathrm{5}_{\mathrm{10}} \:\rightarrow{K}=\mathrm{5} \\ $$$${so}\:\mathrm{10}{M}+\mathrm{5}−\mathrm{15}=\mathrm{0}\rightarrow{M}=\mathrm{1} \\ $$$${L}+{M}=\mathrm{6}+\mathrm{1}=\mathrm{7}\: \\ $$

Commented by Noorzai last updated on 14/Dec/22

Thanks

$${Thanks} \\ $$

Answered by Rasheed.Sindhi last updated on 14/Dec/22

0≤L≤9    Sum of units  ⇒0≤3∙L≤27  3∙L=8^(×) ,18^(  ✓)   [3∙L≠8, ∵L is whole not 8/3]  L=18/3=6  Sum of tens  3∙K+1=ML^(−) =M6^(−)   3∙K=M6^(−) −1=M5^(−)   3∙K=15^( ✓) ,25^(×)     [3∙K≠25,∵K is whole not 25/3]  K=15/3=5  M6^(−) =3∙K+1=3(5)+1=16  M=1  M+L=1+6=7

$$\mathrm{0}\leqslant\mathrm{L}\leqslant\mathrm{9} \\ $$$$\:\:{Sum}\:{of}\:{units} \\ $$$$\Rightarrow\mathrm{0}\leqslant\mathrm{3}\centerdot\mathrm{L}\leqslant\mathrm{27} \\ $$$$\mathrm{3}\centerdot\mathrm{L}=\overset{×} {\mathrm{8}},\overset{\:\:\checkmark} {\mathrm{18}}\:\:\left[\mathrm{3}\centerdot\mathrm{L}\neq\mathrm{8},\:\because\mathrm{L}\:{is}\:{whole}\:{not}\:\mathrm{8}/\mathrm{3}\right] \\ $$$$\mathrm{L}=\mathrm{18}/\mathrm{3}=\mathrm{6} \\ $$$${Sum}\:{of}\:{tens} \\ $$$$\mathrm{3}\centerdot\mathrm{K}+\mathrm{1}=\overline {\mathrm{ML}}=\overline {\mathrm{M6}} \\ $$$$\mathrm{3}\centerdot\mathrm{K}=\overline {\mathrm{M6}}−\mathrm{1}=\overline {\mathrm{M5}} \\ $$$$\mathrm{3}\centerdot\mathrm{K}=\overset{\:\checkmark} {\mathrm{15}},\overset{×} {\mathrm{25}}\:\:\:\:\left[\mathrm{3}\centerdot\mathrm{K}\neq\mathrm{25},\because\mathrm{K}\:{is}\:{whole}\:{not}\:\mathrm{25}/\mathrm{3}\right] \\ $$$$\mathrm{K}=\mathrm{15}/\mathrm{3}=\mathrm{5} \\ $$$$\overline {\mathrm{M6}}=\mathrm{3}\centerdot\mathrm{K}+\mathrm{1}=\mathrm{3}\left(\mathrm{5}\right)+\mathrm{1}=\mathrm{16} \\ $$$$\mathrm{M}=\mathrm{1} \\ $$$$\mathrm{M}+\mathrm{L}=\mathrm{1}+\mathrm{6}=\mathrm{7} \\ $$

Answered by manolex last updated on 14/Dec/22

3×L=a8  a8=  3^( •)    ⇒a=1  3×L=18            ⇒ L=6  3×K+1=M6  3×K=M5        ⇒ K=5                                ⇒ M=1  M+L=70

$$\mathrm{3}×{L}=\boldsymbol{{a}}\mathrm{8} \\ $$$$\boldsymbol{{a}}\mathrm{8}=\:\:\overset{\:\bullet} {\mathrm{3}}\:\:\:\Rightarrow{a}=\mathrm{1} \\ $$$$\mathrm{3}×{L}=\mathrm{18}\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{L}=\mathrm{6} \\ $$$$\mathrm{3}×{K}+\mathrm{1}={M}\mathrm{6} \\ $$$$\mathrm{3}×{K}={M}\mathrm{5}\:\:\:\:\:\:\:\:\Rightarrow\:{K}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{M}=\mathrm{1} \\ $$$${M}+{L}=\mathrm{70} \\ $$

Answered by Rasheed.Sindhi last updated on 15/Dec/22

AnOther Way  ML8^(−)  is 3-digit number⇒M≠0  M is a carry of 3   2-digit numbers  so max value of M is 2  ∴ M=1 or 2  0≤L≤9  ⇒0≤3∙L≤27  3∙L=8^(×) ,18^(  ✓)   [3∙L≠8, ∵L is whole not 8/3]  L=18/3=6  ∴ ML8^(−) =168 or 268  ∵ 3 ∣ ML8^(−)    [∵ ML8^(−) =3∙KL^(−) ]  Hence finally ML8^(−)  =168  So M+L=1+6=7

$$\underline{\boldsymbol{\mathrm{A}}\mathrm{n}\boldsymbol{\mathrm{O}}\mathrm{ther}\:\boldsymbol{\mathrm{W}}\mathrm{ay}} \\ $$$$\overline {\mathrm{ML8}}\:{is}\:\mathrm{3}-{digit}\:{number}\Rightarrow\mathrm{M}\neq\mathrm{0} \\ $$$$\mathrm{M}\:{is}\:{a}\:{carry}\:{of}\:\mathrm{3}\:\:\:\mathrm{2}-{digit}\:{numbers} \\ $$$${so}\:{max}\:{value}\:{of}\:\mathrm{M}\:{is}\:\mathrm{2} \\ $$$$\therefore\:\mathrm{M}=\mathrm{1}\:{or}\:\mathrm{2} \\ $$$$\mathrm{0}\leqslant\mathrm{L}\leqslant\mathrm{9} \\ $$$$\Rightarrow\mathrm{0}\leqslant\mathrm{3}\centerdot\mathrm{L}\leqslant\mathrm{27} \\ $$$$\mathrm{3}\centerdot\mathrm{L}=\overset{×} {\mathrm{8}},\overset{\:\:\checkmark} {\mathrm{18}}\:\:\left[\mathrm{3}\centerdot\mathrm{L}\neq\mathrm{8},\:\because\mathrm{L}\:{is}\:{whole}\:{not}\:\mathrm{8}/\mathrm{3}\right] \\ $$$$\mathrm{L}=\mathrm{18}/\mathrm{3}=\mathrm{6} \\ $$$$\therefore\:\overline {\mathrm{ML8}}=\mathrm{168}\:{or}\:\mathrm{268} \\ $$$$\because\:\mathrm{3}\:\mid\:\overline {\mathrm{ML8}}\:\:\:\left[\because\:\overline {\mathrm{ML8}}=\mathrm{3}\centerdot\overline {\mathrm{KL}}\right] \\ $$$${Hence}\:{finally}\:\overline {\mathrm{ML8}}\:=\mathrm{168} \\ $$$${So}\:\mathrm{M}+\mathrm{L}=\mathrm{1}+\mathrm{6}=\mathrm{7} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com