Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182512 by mathlove last updated on 10/Dec/22

Answered by manxsol last updated on 10/Dec/22

(√7)

$$\sqrt{\mathrm{7}} \\ $$

Answered by manxsol last updated on 11/Dec/22

analisis    11−2a_1 ⟩0⇒a_1 ⟨5.5  0⟨ x ⟨(√(11))    x=(√(11−2a_1 ))  a_1 =^3 (√(17−3a_2 ))  a_2 =^4 (√(97−4a_3 ))  a_3 =^5 (√(1049−5d))  ....=......  x^2 =11−2a_1   a_1 ^3 =17−3a_2   a_2 ^4 =97−4a_3   a_3 ^5 =1048−5a_4   ..........................  x^2 −7=2^2 −2a_1   a_1 ^3 =2^3 +3^2 −3a_2   a_2 ^4 =3^4 +4^2 −4a_3   a_3 ^5 =4^5 +5^2 −5a_4   .............................  x^2 −7=2(2−a_1 )  a_1 ^3 −2^3 =3(3−a_2 )  a_2 ^4 −3^4 =4(4−a_3 )  a_3 ^5 −4^5 =5(5−a_4 )  ..........................  x^2 −7=2(2−a_1 )  (a_1 −2)P_1 =3(3−a_2 )  (a_2 −3)P_2 =4(4−a_3 )  (a_3 −4)P_3 =5(5−a_4 )  P_n =[a_n ^(n+2) −(n+1)^(n+2) ]/[a_n −(n+1)]  .....................  multiplication  (x^2 −7)P_1 P_2 P_3 ...=2.3.4.5  x^2 −7=((n!)/(P_1 P_2 P_(3......) ))  x^2 =7+((n!)/(∐Pn))  n⇒∞⇒((n!)/(∐P_n ))⇒0      ∴x^2 =7          x=(√7)        x=(√7)   approves                       initial condition

$${analisis}\:\:\:\:\mathrm{11}−\mathrm{2}{a}_{\mathrm{1}} \rangle\mathrm{0}\Rightarrow{a}_{\mathrm{1}} \langle\mathrm{5}.\mathrm{5} \\ $$$$\mathrm{0}\langle\:{x}\:\langle\sqrt{\mathrm{11}} \\ $$$$ \\ $$$${x}=\sqrt{\mathrm{11}−\mathrm{2}{a}_{\mathrm{1}} } \\ $$$${a}_{\mathrm{1}} =^{\mathrm{3}} \sqrt{\mathrm{17}−\mathrm{3}{a}_{\mathrm{2}} } \\ $$$${a}_{\mathrm{2}} =^{\mathrm{4}} \sqrt{\mathrm{97}−\mathrm{4}{a}_{\mathrm{3}} } \\ $$$${a}_{\mathrm{3}} =^{\mathrm{5}} \sqrt{\mathrm{1049}−\mathrm{5}{d}} \\ $$$$....=...... \\ $$$${x}^{\mathrm{2}} =\mathrm{11}−\mathrm{2}{a}_{\mathrm{1}} \\ $$$${a}_{\mathrm{1}} ^{\mathrm{3}} =\mathrm{17}−\mathrm{3}{a}_{\mathrm{2}} \\ $$$${a}_{\mathrm{2}} ^{\mathrm{4}} =\mathrm{97}−\mathrm{4}{a}_{\mathrm{3}} \\ $$$${a}_{\mathrm{3}} ^{\mathrm{5}} =\mathrm{1048}−\mathrm{5}{a}_{\mathrm{4}} \\ $$$$.......................... \\ $$$${x}^{\mathrm{2}} −\mathrm{7}=\mathrm{2}^{\mathrm{2}} −\mathrm{2}{a}_{\mathrm{1}} \\ $$$${a}_{\mathrm{1}} ^{\mathrm{3}} =\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{2}} −\mathrm{3}{a}_{\mathrm{2}} \\ $$$${a}_{\mathrm{2}} ^{\mathrm{4}} =\mathrm{3}^{\mathrm{4}} +\mathrm{4}^{\mathrm{2}} −\mathrm{4}{a}_{\mathrm{3}} \\ $$$${a}_{\mathrm{3}} ^{\mathrm{5}} =\mathrm{4}^{\mathrm{5}} +\mathrm{5}^{\mathrm{2}} −\mathrm{5}{a}_{\mathrm{4}} \\ $$$$............................. \\ $$$${x}^{\mathrm{2}} −\mathrm{7}=\mathrm{2}\left(\mathrm{2}−{a}_{\mathrm{1}} \right) \\ $$$${a}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{2}^{\mathrm{3}} =\mathrm{3}\left(\mathrm{3}−{a}_{\mathrm{2}} \right) \\ $$$${a}_{\mathrm{2}} ^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} =\mathrm{4}\left(\mathrm{4}−{a}_{\mathrm{3}} \right) \\ $$$${a}_{\mathrm{3}} ^{\mathrm{5}} −\mathrm{4}^{\mathrm{5}} =\mathrm{5}\left(\mathrm{5}−{a}_{\mathrm{4}} \right) \\ $$$$.......................... \\ $$$${x}^{\mathrm{2}} −\mathrm{7}=\mathrm{2}\left(\mathrm{2}−{a}_{\mathrm{1}} \right) \\ $$$$\left({a}_{\mathrm{1}} −\mathrm{2}\right){P}_{\mathrm{1}} =\mathrm{3}\left(\mathrm{3}−{a}_{\mathrm{2}} \right) \\ $$$$\left({a}_{\mathrm{2}} −\mathrm{3}\right){P}_{\mathrm{2}} =\mathrm{4}\left(\mathrm{4}−{a}_{\mathrm{3}} \right) \\ $$$$\left({a}_{\mathrm{3}} −\mathrm{4}\right){P}_{\mathrm{3}} =\mathrm{5}\left(\mathrm{5}−{a}_{\mathrm{4}} \right) \\ $$$${P}_{{n}} =\left[{a}_{{n}} ^{{n}+\mathrm{2}} −\left({n}+\mathrm{1}\right)^{{n}+\mathrm{2}} \right]/\left[{a}_{{n}} −\left({n}+\mathrm{1}\right)\right] \\ $$$$..................... \\ $$$${multiplication} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{7}\right){P}_{\mathrm{1}} {P}_{\mathrm{2}} {P}_{\mathrm{3}} ...=\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5} \\ $$$${x}^{\mathrm{2}} −\mathrm{7}=\frac{{n}!}{{P}_{\mathrm{1}} {P}_{\mathrm{2}} {P}_{\mathrm{3}......} } \\ $$$${x}^{\mathrm{2}} =\mathrm{7}+\frac{{n}!}{\coprod{Pn}} \\ $$$${n}\Rightarrow\infty\Rightarrow\frac{{n}!}{\coprod{P}_{{n}} }\Rightarrow\mathrm{0}\:\:\:\:\:\:\therefore{x}^{\mathrm{2}} =\mathrm{7} \\ $$$$\:\:\:\:\:\:\:\:{x}=\sqrt{\mathrm{7}} \\ $$$$\:\:\:\:\:\:{x}=\sqrt{\mathrm{7}}\:\:\:{approves} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{initial}\:{condition} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com