Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182219 by SANOGO last updated on 05/Dec/22

Answered by Ar Brandon last updated on 06/Dec/22

Sea I(α)=∫_0 ^1 ((t^α −1)/(lnt))dt  Derivando con respecto a α obtenemos  I ′(α)=∫_0 ^1 ((t^α lnt)/(lnt))dt=∫_0 ^1 t^α dt=[(t^(α+1) /(α+1))]_0 ^1 =(1/(α+1))  Ahora integrando con respecto a α obtenemos  I(α)=∫(1/(α+1))dα=ln(α+1)+C  Pero I(0)=∫_0 ^1 ((t^0 −1)/(lnt))dt=0=ln(0+1)+C ⇒C=0  ⇒I(α)=ln(α+1)  ∫_0 ^1 ((t−1)/(lnt))dt=I(1)=ln(2)

$$\mathrm{Sea}\:{I}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\alpha} −\mathrm{1}}{\mathrm{ln}{t}}{dt} \\ $$$$\mathrm{Derivando}\:\mathrm{con}\:\mathrm{respecto}\:\mathrm{a}\:\alpha\:\mathrm{obtenemos} \\ $$$${I}\:'\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\alpha} \mathrm{ln}{t}}{\mathrm{ln}{t}}{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\alpha} {dt}=\left[\frac{{t}^{\alpha+\mathrm{1}} }{\alpha+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\alpha+\mathrm{1}} \\ $$$$\mathrm{Ahora}\:\mathrm{integrando}\:\mathrm{con}\:\mathrm{respecto}\:\mathrm{a}\:\alpha\:\mathrm{obtenemos} \\ $$$${I}\left(\alpha\right)=\int\frac{\mathrm{1}}{\alpha+\mathrm{1}}{d}\alpha=\mathrm{ln}\left(\alpha+\mathrm{1}\right)+{C} \\ $$$$\mathrm{Pero}\:{I}\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\mathrm{0}} −\mathrm{1}}{\mathrm{ln}{t}}{dt}=\mathrm{0}=\mathrm{ln}\left(\mathrm{0}+\mathrm{1}\right)+{C}\:\Rightarrow{C}=\mathrm{0} \\ $$$$\Rightarrow{I}\left(\alpha\right)=\mathrm{ln}\left(\alpha+\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}−\mathrm{1}}{\mathrm{ln}{t}}{dt}={I}\left(\mathrm{1}\right)=\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com