Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182176 by peter frank last updated on 05/Dec/22

Answered by MikeH last updated on 05/Dec/22

let w^→  = xi + 6j + y k  orthogonal to u^→  and v^→  ⇒ w^→  = u^→ × v^→   ⇒ xi + 6j + yk =  determinant ((i,j,k),((−1),0,1),((−1),(−2),2))  ⇒ xi + 6j + yk = i(2)−j(−1) + k(2)  ⇒ xi + 6j + yk = 2i + j + 2k  x = 2 and y = 2  ⇒ w^→  = 2i + 6j + 2k

$$\mathrm{let}\:\overset{\rightarrow} {\mathrm{w}}\:=\:{x}\mathrm{i}\:+\:\mathrm{6j}\:+\:{y}\:\mathrm{k} \\ $$$$\mathrm{orthogonal}\:\mathrm{to}\:\overset{\rightarrow} {\mathrm{u}}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{v}}\:\Rightarrow\:\overset{\rightarrow} {\mathrm{w}}\:=\:\overset{\rightarrow} {\mathrm{u}}×\:\overset{\rightarrow} {\mathrm{v}} \\ $$$$\Rightarrow\:{x}\mathrm{i}\:+\:\mathrm{6j}\:+\:{y}\mathrm{k}\:=\:\begin{vmatrix}{\mathrm{i}}&{\mathrm{j}}&{\mathrm{k}}\\{−\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}\\{−\mathrm{1}}&{−\mathrm{2}}&{\mathrm{2}}\end{vmatrix} \\ $$$$\Rightarrow\:{x}\mathrm{i}\:+\:\mathrm{6j}\:+\:{y}\mathrm{k}\:=\:\mathrm{i}\left(\mathrm{2}\right)−\mathrm{j}\left(−\mathrm{1}\right)\:+\:\mathrm{k}\left(\mathrm{2}\right) \\ $$$$\Rightarrow\:{x}\mathrm{i}\:+\:\mathrm{6j}\:+\:{y}\mathrm{k}\:=\:\mathrm{2i}\:+\:\mathrm{j}\:+\:\mathrm{2k} \\ $$$${x}\:=\:\mathrm{2}\:\mathrm{and}\:{y}\:=\:\mathrm{2} \\ $$$$\Rightarrow\:\overset{\rightarrow} {\mathrm{w}}\:=\:\mathrm{2i}\:+\:\mathrm{6j}\:+\:\mathrm{2k}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com