Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182075 by Acem last updated on 04/Dec/22

Commented by Acem last updated on 04/Dec/22

Regular hexagon ↑

$${Regular}\:{hexagon}\:\uparrow \\ $$

Answered by mr W last updated on 04/Dec/22

Commented by mr W last updated on 04/Dec/22

say area of the regular hexagon is A.  it can be easily seen that  X+Y=(A/6)  S_2 =(A/3)    on the other side  S_1 +S_2 +S_3 +X+Y=A  ⇒S_1 +S_3 =A−(A/3)−(A/6)=(A/2)    ⇒((S_1 +S_3 )/S_2 )=((A/2)/(A/3))=(3/2)  ⇒((S_1 +2.3)/(3.4))=(3/2)  ⇒S_1 =((3×3.4)/2)−2.3=2.8 ✓

$${say}\:{area}\:{of}\:{the}\:{regular}\:{hexagon}\:{is}\:{A}. \\ $$$${it}\:{can}\:{be}\:{easily}\:{seen}\:{that} \\ $$$${X}+{Y}=\frac{{A}}{\mathrm{6}} \\ $$$${S}_{\mathrm{2}} =\frac{{A}}{\mathrm{3}}\:\: \\ $$$${on}\:{the}\:{other}\:{side} \\ $$$${S}_{\mathrm{1}} +{S}_{\mathrm{2}} +{S}_{\mathrm{3}} +{X}+{Y}={A} \\ $$$$\Rightarrow{S}_{\mathrm{1}} +{S}_{\mathrm{3}} ={A}−\frac{{A}}{\mathrm{3}}−\frac{{A}}{\mathrm{6}}=\frac{{A}}{\mathrm{2}}\:\: \\ $$$$\Rightarrow\frac{{S}_{\mathrm{1}} +{S}_{\mathrm{3}} }{{S}_{\mathrm{2}} }=\frac{\frac{{A}}{\mathrm{2}}}{\frac{{A}}{\mathrm{3}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{{S}_{\mathrm{1}} +\mathrm{2}.\mathrm{3}}{\mathrm{3}.\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{S}_{\mathrm{1}} =\frac{\mathrm{3}×\mathrm{3}.\mathrm{4}}{\mathrm{2}}−\mathrm{2}.\mathrm{3}=\mathrm{2}.\mathrm{8}\:\checkmark \\ $$

Commented by Acem last updated on 04/Dec/22

Yes, thanks Sir!

$${Yes},\:{thanks}\:{Sir}! \\ $$

Answered by Acem last updated on 04/Dec/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com