Question Number 181857 by KINMATICS last updated on 01/Dec/22 | ||
Answered by hmr last updated on 01/Dec/22 | ||
$$\int_{\frac{\pi}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\:\sqrt{\mathrm{2}}} \:\frac{{rcos}\left(\theta\right)}{{r}^{\mathrm{2}} }\:\:{r}\:{dr}\:{d}\theta \\ $$$$=\:\int_{\frac{\pi}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\:\sqrt{\mathrm{2}}} \:{cos}\left(\theta\right)\:{dr}\:{d}\theta \\ $$$$=\:\int_{\frac{\pi}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{2}}} \left[{r}\:{cos}\left(\theta\right)\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:{d}\theta \\ $$$$=\:\int_{\frac{\pi}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{2}}\:{cos}\left(\theta\right)\:{d}\theta \\ $$$$=\:\sqrt{\mathrm{2}}\:\left[{sin}\left(\theta\right)\right]_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\:\sqrt{\mathrm{2}}\:\left(\mathrm{1}\:−\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$=\:\sqrt{\mathrm{2}}\:−\mathrm{1} \\ $$ | ||