Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 179991 by mnjuly1970 last updated on 05/Nov/22

Answered by mindispower last updated on 05/Nov/22

=Σ_(n≥2) ∫_0 ^∞ (1/(m!))x^m e^(−nx) dx=(1/(m!))∫_0 ^∞ ((y/n))^m e^(−y) (dy/n)  =(1/(m!))∫_0 ^∞ (1/n^(m+1) )y^m e^(−y) dy=(1/(m!)).(1/n^(m+1) )∫_0 ^∞ y^m e^(−y) dy  =(1/(m!)).(1/n^(m+1) ).Γ(m+1)=(1/n^(m+1) )  Σ_(m≥1) (1/n^(m+1) )=(1/n^2 ).(1/(1−(1/n)))=(1/(n(n−1)))  Σ_(n≥2) (1/(n(n−1)))=Σ(1/(n−1))−(1/n)=1

$$=\underset{{n}\geqslant\mathrm{2}} {\sum}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{m}!}{x}^{{m}} {e}^{−{nx}} {dx}=\frac{\mathrm{1}}{{m}!}\int_{\mathrm{0}} ^{\infty} \left(\frac{{y}}{{n}}\right)^{{m}} {e}^{−{y}} \frac{{dy}}{{n}} \\ $$$$=\frac{\mathrm{1}}{{m}!}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}^{{m}+\mathrm{1}} }{y}^{{m}} {e}^{−{y}} {dy}=\frac{\mathrm{1}}{{m}!}.\frac{\mathrm{1}}{{n}^{{m}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} {y}^{{m}} {e}^{−{y}} {dy} \\ $$$$=\frac{\mathrm{1}}{{m}!}.\frac{\mathrm{1}}{{n}^{{m}+\mathrm{1}} }.\Gamma\left({m}+\mathrm{1}\right)=\frac{\mathrm{1}}{{n}^{{m}+\mathrm{1}} } \\ $$$$\underset{{m}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}^{{m}+\mathrm{1}} }=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }.\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{n}}}=\frac{\mathrm{1}}{{n}\left({n}−\mathrm{1}\right)} \\ $$$$\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}\left({n}−\mathrm{1}\right)}=\Sigma\frac{\mathrm{1}}{{n}−\mathrm{1}}−\frac{\mathrm{1}}{{n}}=\mathrm{1} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 05/Nov/22

     mercey sir

$$\:\:\:\:\:{mercey}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com