Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 179566 by Acem last updated on 30/Oct/22

Answered by a.lgnaoui last updated on 30/Oct/22

AC∣∣FD  ∡BAC=120−90=30  sin 30=((BH)/3)  BH=(3/2)  ⇒BE=(3/2)+5=((13)/2)   (1)  ∡ABD=360−240=120  ⇒∡BHC=∡BED=90−30=60   cos 60=((BE)/(BD))   BD=((BE)/(cos 60))=((13)/(2cos 60))     BD=13

$$\mathrm{AC}\mid\mid\mathrm{FD}\:\:\measuredangle\mathrm{BAC}=\mathrm{120}−\mathrm{90}=\mathrm{30} \\ $$$$\mathrm{sin}\:\mathrm{30}=\frac{\mathrm{BH}}{\mathrm{3}}\:\:\mathrm{BH}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\Rightarrow\mathrm{BE}=\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{5}=\frac{\mathrm{13}}{\mathrm{2}}\:\:\:\left(\mathrm{1}\right) \\ $$$$\measuredangle\mathrm{ABD}=\mathrm{360}−\mathrm{240}=\mathrm{120}\:\:\Rightarrow\measuredangle\mathrm{BHC}=\measuredangle\mathrm{BED}=\mathrm{90}−\mathrm{30}=\mathrm{60} \\ $$$$\:\mathrm{cos}\:\mathrm{60}=\frac{\mathrm{BE}}{\mathrm{BD}}\:\:\:\mathrm{BD}=\frac{\mathrm{BE}}{\mathrm{cos}\:\mathrm{60}}=\frac{\mathrm{13}}{\mathrm{2cos}\:\mathrm{60}} \\ $$$$\:\:\:\mathrm{BD}=\mathrm{13} \\ $$$$ \\ $$

Commented by a.lgnaoui last updated on 30/Oct/22

Commented by Acem last updated on 30/Oct/22

ooops , try again, sorry

$${ooops}\:,\:{try}\:{again},\:{sorry} \\ $$

Commented by a.lgnaoui last updated on 30/Oct/22

 Rectif:  ∡HBC=∡EBD=60  (Not∡ BHC=∡BED)

$$\:\mathrm{Rectif}: \\ $$$$\measuredangle\mathrm{HBC}=\measuredangle\mathrm{EBD}=\mathrm{60}\:\:\left(\mathrm{Not}\measuredangle\:\mathrm{BHC}=\measuredangle\mathrm{BED}\right) \\ $$

Commented by Acem last updated on 30/Oct/22

∡BHC=∡BED=90  not 60

$$\measuredangle\mathrm{BHC}=\measuredangle\mathrm{BED}=\mathrm{90}\:\:{not}\:\mathrm{60} \\ $$

Commented by Acem last updated on 30/Oct/22

yes HBC= 60 , you shoked me... now you′re right   And the answer is corrrrect! Thanks

$${yes}\:{HBC}=\:\mathrm{60}\:,\:{you}\:{shoked}\:{me}...\:{now}\:{you}'{re}\:{right} \\ $$$$\:{And}\:{the}\:{answer}\:{is}\:{corrrrect}!\:{Thanks} \\ $$

Commented by Acem last updated on 30/Oct/22

There′s another way, it′s easy too

$${There}'{s}\:{another}\:{way},\:{it}'{s}\:{easy}\:{too} \\ $$

Answered by Acem last updated on 30/Oct/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com