Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 179435 by Tawa11 last updated on 29/Oct/22

Commented by a.lgnaoui last updated on 29/Oct/22

V?

$$\mathrm{V}? \\ $$

Answered by Peace last updated on 31/Oct/22

Σ_(n≥1) ((sin(2πnt)cos(tan^− (4nπ))−cos(2πnt)sin(tan^(−1) (4nπ)))/(n(√(1+16n^2 π^2 ))))=S(t)  S(t)=A−B;A=Σ_(n≥1) ((sin(2πnt).(√(1/(1+tg^2 (tan^(−1) (4nπ))))))/(n(√(1+16n^2 π^2 ))))  B=Σ_(n≥1) ((cos(2πnt).(√((tg^2 (tan^− (4nπ)))/(1+tg^2 (tan^− (4n𝛑))))))/(n(√(1+16n^2 π^2 ))))  =Σ_(n≥1) ((cos(2πnt)4π)/( (1+16n^2 π^2 )))=ReΣ((e^(2inπt) .4π)/((4nπ+i)(4nπ−i)))  =−(1/(2π))Σ((e^(2inπt) /(n−(i/(4π)))) −    (e^(2inπt) /(n+(i/(4π)))))  A=Σ_(n≥1) ((sin(2πnt))/(n(1+16n^2 π^2 )))=ImΣ_(n≥1) (e^(i2πnt) /(n(1+16n^2 π^2 )))  (1/(n(1+16n^2 π^2 )))=(1/(n(4nπ−i)(4n𝛑+i)))=(1/n)+((−2π)/((4nπ−i))).−((2π)/(4nπ+i))  A=Σ_(n≥1) (e^(i2πnt) /n)−(1/(2π))Σ_(n≥1) (e^(2inπt) /(n−(i/(4π))))−(1/(2π))Σ_(n≥1) (e^(i2nπt) /(n+(i/(4π))))  −ln(1−x)=Σ_(n≥1) (x^n /n)  Φ(z,s,a)=Σ_(n≥0) (z^n /((n+a)^s ))  Lerch Transcendent  Function  =−ln(1−e^(2iπnt) )−(1/(2π))(Φ(e^(2iπt) ,1,−(i/(4π)))+Φ(e^(2iπt) ,1,(i/(4π))))=A  B=−(1/(2𝛑)).(Φ(e^(2iπt) ,1,−(i/(4π)))−8π−Φ(e^(2iπt) ,1,(i/(4π))))  S=−Re(B)+Im(A)

$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left(\mathrm{2}\pi{nt}\right){cos}\left({tan}^{−} \left(\mathrm{4}{n}\pi\right)\right)−{cos}\left(\mathrm{2}\pi{nt}\right){sin}\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{4}{n}\pi\right)\right)}{{n}\sqrt{\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \pi^{\mathrm{2}} }}={S}\left({t}\right) \\ $$$${S}\left({t}\right)={A}−{B};{A}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left(\mathrm{2}\pi{nt}\right).\sqrt{\frac{\mathrm{1}}{\mathrm{1}+{tg}^{\mathrm{2}} \left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{4}{n}\pi\right)\right)}}}{{n}\sqrt{\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \pi^{\mathrm{2}} }} \\ $$$${B}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}\pi{nt}\right).\sqrt{\frac{{tg}^{\mathrm{2}} \left({tan}^{−} \left(\mathrm{4}{n}\pi\right)\right)}{\mathrm{1}+{tg}^{\mathrm{2}} \left({tan}^{−} \left(\mathrm{4}\boldsymbol{{n}\pi}\right)\right)}}}{{n}\sqrt{\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \pi^{\mathrm{2}} }} \\ $$$$=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}\pi{nt}\right)\mathrm{4}\pi}{\:\left(\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \pi^{\mathrm{2}} \right)}={Re}\Sigma\frac{{e}^{\mathrm{2}{in}\pi{t}} .\mathrm{4}\pi}{\left(\mathrm{4}{n}\pi+{i}\right)\left(\mathrm{4}{n}\pi−{i}\right)} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}\pi}\Sigma\left(\frac{{e}^{\mathrm{2}{in}\pi{t}} }{{n}−\frac{{i}}{\mathrm{4}\pi}}\:−\:\:\:\:\frac{{e}^{\mathrm{2}{in}\pi{t}} }{{n}+\frac{{i}}{\mathrm{4}\pi}}\right) \\ $$$${A}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left(\mathrm{2}\pi{nt}\right)}{{n}\left(\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \pi^{\mathrm{2}} \right)}={Im}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{e}^{{i}\mathrm{2}\pi{nt}} }{{n}\left(\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \pi^{\mathrm{2}} \right)} \\ $$$$\frac{\mathrm{1}}{{n}\left(\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \pi^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{{n}\left(\mathrm{4}{n}\pi−\boldsymbol{{i}}\right)\left(\mathrm{4}\boldsymbol{{n}\pi}+{i}\right)}=\frac{\mathrm{1}}{{n}}+\frac{−\mathrm{2}\pi}{\left(\mathrm{4}{n}\pi−{i}\right)}.−\frac{\mathrm{2}\pi}{\mathrm{4}{n}\pi+{i}} \\ $$$${A}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{e}^{{i}\mathrm{2}\pi{nt}} }{{n}}−\frac{\mathrm{1}}{\mathrm{2}\pi}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{e}^{\mathrm{2}{in}\pi{t}} }{{n}−\frac{{i}}{\mathrm{4}\pi}}−\frac{\mathrm{1}}{\mathrm{2}\pi}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{e}^{{i}\mathrm{2}{n}\pi{t}} }{{n}+\frac{{i}}{\mathrm{4}\pi}} \\ $$$$−{ln}\left(\mathrm{1}−{x}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{x}^{{n}} }{{n}} \\ $$$$\Phi\left({z},{s},{a}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{{z}^{{n}} }{\left({n}+{a}\right)^{{s}} }\:\:{Lerch}\:{Transcendent}\:\:{Function} \\ $$$$=−{ln}\left(\mathrm{1}−{e}^{\mathrm{2}{i}\pi{nt}} \right)−\frac{\mathrm{1}}{\mathrm{2}\pi}\left(\Phi\left({e}^{\mathrm{2}{i}\pi{t}} ,\mathrm{1},−\frac{{i}}{\mathrm{4}\pi}\right)+\Phi\left({e}^{\mathrm{2}{i}\pi{t}} ,\mathrm{1},\frac{{i}}{\mathrm{4}\pi}\right)\right)={A} \\ $$$${B}=−\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{\pi}}.\left(\Phi\left({e}^{\mathrm{2}{i}\pi{t}} ,\mathrm{1},−\frac{{i}}{\mathrm{4}\pi}\right)−\mathrm{8}\pi−\Phi\left({e}^{\mathrm{2}{i}\pi{t}} ,\mathrm{1},\frac{{i}}{\mathrm{4}\pi}\right)\right) \\ $$$${S}=−{Re}\left({B}\right)+{Im}\left({A}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Tawa11 last updated on 01/Nov/22

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by mindispower last updated on 02/Nov/22

withe pleasur thanl you all happinesse for you

$${withe}\:{pleasur}\:{thanl}\:{you}\:{all}\:{happinesse}\:{for}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com