Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 179042 by mnjuly1970 last updated on 23/Oct/22

Answered by Ar Brandon last updated on 23/Oct/22

I=∫_0 ^(π/2) ((cos^2 x)/(sin^4 x+cos^2 x))dx=∫_0 ^∞ (dt/(t^4 +t^2 +1))    =(1/2)∫_0 ^∞ ((1+(1/t^2 ))/((t−(1/t))^2 +3))dt−(1/2)∫_0 ^∞ ((1−(1/t^2 ))/((t+(1/t))^2 −1))dt    =(1/(2(√3)))[arctan(((t^2 −1)/(t(√3))))]_0 ^∞ +(1/4)[ln∣((t^2 +t+1)/(t^2 −t+1))∣]_0 ^∞     =(1/(2(√3)))((π/2)−−(π/2))=(π/(2(√3))) ⇒a=((2(√3))/π)

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}^{\mathrm{4}} {x}+\mathrm{cos}^{\mathrm{2}} {x}}{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{3}}{dt}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}+\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\left[\mathrm{arctan}\left(\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\mid\frac{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}\mid\right]_{\mathrm{0}} ^{\infty} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\left(\frac{\pi}{\mathrm{2}}−−\frac{\pi}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\Rightarrow{a}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\pi} \\ $$

Commented by mnjuly1970 last updated on 24/Oct/22

 thank you so much sir Brandon

$$\:{thank}\:{you}\:{so}\:{much}\:{sir}\:{Brandon} \\ $$

Answered by MJS_new last updated on 23/Oct/22

∫((cos^2  x)/(sin^4  x +cos^2  x))dx=       [t=tan x → dx=cos^2  x dt]  =∫_0 ^(π/2) (dt/(t^4 +t^2 +1))=  =(1/4)∫_0 ^∞ (((2t+1)/(t^2 +t+1))+(1/(t^2 +t+1))−((2t−1)/(t^2 −t+1))+(1/(t^2 −t+1)))dt=  =(1/4)[ln (t^2 +t+1) +((2(√3))/3)arctan (((√3)(2t+1))/3) −ln (t^2 −t+1) +((2(√3))/3)arctan (((√3)(2t−1))/3)]_0 ^∞ =  =(((√3)π)/6)  ⇒  a=(6/( (√3)π))=((2(√3))/π)

$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{4}} \:{x}\:+\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dt}}{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\frac{\mathrm{2}{t}+\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}−\frac{\mathrm{2}{t}−\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}\right){dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)\:+\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}}\:−\mathrm{ln}\:\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)\:+\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}−\mathrm{1}\right)}{\mathrm{3}}\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=\frac{\sqrt{\mathrm{3}}\pi}{\mathrm{6}} \\ $$$$\Rightarrow \\ $$$${a}=\frac{\mathrm{6}}{\:\sqrt{\mathrm{3}}\pi}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\pi} \\ $$

Commented by mnjuly1970 last updated on 24/Oct/22

grateful sir very nice solution

$${grateful}\:{sir}\:{very}\:{nice}\:{solution} \\ $$

Commented by SLVR last updated on 24/Oct/22

great sir

$${great}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com