Question Number 179042 by mnjuly1970 last updated on 23/Oct/22 | ||
Answered by Ar Brandon last updated on 23/Oct/22 | ||
$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{sin}^{\mathrm{4}} {x}+\mathrm{cos}^{\mathrm{2}} {x}}{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{3}}{dt}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}+\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} −\mathrm{1}}{dt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\left[\mathrm{arctan}\left(\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\mid\frac{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}\mid\right]_{\mathrm{0}} ^{\infty} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\left(\frac{\pi}{\mathrm{2}}−−\frac{\pi}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\Rightarrow{a}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\pi} \\ $$ | ||
Commented by mnjuly1970 last updated on 24/Oct/22 | ||
$$\:{thank}\:{you}\:{so}\:{much}\:{sir}\:{Brandon} \\ $$ | ||
Answered by MJS_new last updated on 23/Oct/22 | ||
$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{4}} \:{x}\:+\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dt}}{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\left(\frac{\mathrm{2}{t}+\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}−\frac{\mathrm{2}{t}−\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}\right){dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)\:+\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}+\mathrm{1}\right)}{\mathrm{3}}\:−\mathrm{ln}\:\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)\:+\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}−\mathrm{1}\right)}{\mathrm{3}}\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=\frac{\sqrt{\mathrm{3}}\pi}{\mathrm{6}} \\ $$$$\Rightarrow \\ $$$${a}=\frac{\mathrm{6}}{\:\sqrt{\mathrm{3}}\pi}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\pi} \\ $$ | ||
Commented by mnjuly1970 last updated on 24/Oct/22 | ||
$${grateful}\:{sir}\:{very}\:{nice}\:{solution} \\ $$ | ||
Commented by SLVR last updated on 24/Oct/22 | ||
$${great}\:{sir} \\ $$ | ||