Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 178751 by mathlove last updated on 21/Oct/22

Answered by cortano1 last updated on 21/Oct/22

 With L′Hopital rule   L=lim_(x→−1)  ((2020x^(2019) −2021)/(3x^2 ))   =((−2020−2021)/3)= −((4041)/3)=−1347

$$\:\mathrm{With}\:\mathrm{L}'\mathrm{Hopital}\:\mathrm{rule} \\ $$$$\:\mathrm{L}=\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2020x}^{\mathrm{2019}} −\mathrm{2021}}{\mathrm{3x}^{\mathrm{2}} } \\ $$$$\:=\frac{−\mathrm{2020}−\mathrm{2021}}{\mathrm{3}}=\:−\frac{\mathrm{4041}}{\mathrm{3}}=−\mathrm{1347} \\ $$

Commented by mathlove last updated on 21/Oct/22

with out L′Hopital rule sir

$${with}\:{out}\:{L}'{Hopital}\:{rule}\:{sir} \\ $$

Answered by cortano1 last updated on 21/Oct/22

 let x+1=y   lim_(y→0)  (((y−1)^(2020) −2021(y−1)−2022)/((y−1)^3 +1))  = lim_(y→0)  (((1−y)^(2020) −2021y−1)/(y^3 −3y^2 +3y))  = lim_(y→0)  ((1−2020y−2021y−1)/(y(y^2 −3y+3)))  = lim_(y→0)  ((−4041y)/(y(y^2 −3y+3)))=−((4041)/3)

$$\:\mathrm{let}\:\mathrm{x}+\mathrm{1}=\mathrm{y} \\ $$$$\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2020}} −\mathrm{2021}\left(\mathrm{y}−\mathrm{1}\right)−\mathrm{2022}}{\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{3}} +\mathrm{1}} \\ $$$$=\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\mathrm{y}\right)^{\mathrm{2020}} −\mathrm{2021y}−\mathrm{1}}{\mathrm{y}^{\mathrm{3}} −\mathrm{3y}^{\mathrm{2}} +\mathrm{3y}} \\ $$$$=\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{2020y}−\mathrm{2021y}−\mathrm{1}}{\mathrm{y}\left(\mathrm{y}^{\mathrm{2}} −\mathrm{3y}+\mathrm{3}\right)} \\ $$$$=\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{4041y}}{\mathrm{y}\left(\mathrm{y}^{\mathrm{2}} −\mathrm{3y}+\mathrm{3}\right)}=−\frac{\mathrm{4041}}{\mathrm{3}} \\ $$$$ \\ $$

Commented by mathlove last updated on 22/Oct/22

thank sir

$${thank}\:{sir} \\ $$

Answered by kapoorshah last updated on 21/Oct/22

       lim_(x→ −1)  ((x^(2020)  − 1 − 2021x − 2021  )/((x + 1)( x^2  − x + 1)))        =lim_(x→ −1)  ((( x + 1)(x^(1019)  − x^(1018)  + x^(1017)  − x^(1016)  + ..... + x − 1) − 2021(x + 1)  )/((x + 1)( x^2  − x + 1)))         =lim_(x→ −1)  ((x^(1019)  − x^(1018)  + x^(1017)  − x^(1016)  + ..... + x − 1 − 2021)/( x^2  − x + 1))         = ((−1 − 1 − 1 − 1 − ..... − 1 − 1 − 2021)/( 1 + 1 + 1))         = ((− 2020 − 2021)/( 3))         = − 1347

$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\:−\mathrm{1}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2020}} \:−\:\mathrm{1}\:−\:\mathrm{2021}{x}\:−\:\mathrm{2021}\:\:}{\left({x}\:+\:\mathrm{1}\right)\left(\:{x}^{\mathrm{2}} \:−\:{x}\:+\:\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:=\underset{{x}\rightarrow\:−\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\:{x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{1019}} \:−\:{x}^{\mathrm{1018}} \:+\:{x}^{\mathrm{1017}} \:−\:{x}^{\mathrm{1016}} \:+\:.....\:+\:{x}\:−\:\mathrm{1}\right)\:−\:\mathrm{2021}\left({x}\:+\:\mathrm{1}\right)\:\:}{\left({x}\:+\:\mathrm{1}\right)\left(\:{x}^{\mathrm{2}} \:−\:{x}\:+\:\mathrm{1}\right)}\: \\ $$$$\:\:\:\:\:\:=\underset{{x}\rightarrow\:−\mathrm{1}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{1019}} \:−\:{x}^{\mathrm{1018}} \:+\:{x}^{\mathrm{1017}} \:−\:{x}^{\mathrm{1016}} \:+\:.....\:+\:{x}\:−\:\mathrm{1}\:−\:\mathrm{2021}}{\:{x}^{\mathrm{2}} \:−\:{x}\:+\:\mathrm{1}}\: \\ $$$$\:\:\:\:\:\:=\:\frac{−\mathrm{1}\:−\:\mathrm{1}\:−\:\mathrm{1}\:−\:\mathrm{1}\:−\:.....\:−\:\mathrm{1}\:−\:\mathrm{1}\:−\:\mathrm{2021}}{\:\mathrm{1}\:+\:\mathrm{1}\:+\:\mathrm{1}}\: \\ $$$$\:\:\:\:\:\:=\:\frac{−\:\mathrm{2020}\:−\:\mathrm{2021}}{\:\mathrm{3}}\: \\ $$$$\:\:\:\:\:\:=\:−\:\mathrm{1347} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathlove last updated on 22/Oct/22

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com