Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 1763 by Gerlândio Almeida last updated on 18/Sep/15

$$ \\ $$

Commented by 123456 last updated on 18/Sep/15

p_0 (n)=xn  r(n)=αxn  p_1 (n)=p_0 (n)−r(n)=(1−α)xn  r(n)≥p_0 (m)  αxn≥xm            x>0  n≥(m/α)                    α>0  p_0 (n)≥((xm)/α)  r_0 (n)≥xm  p_1 (n)≥(((1−α)xm)/α)  (n,m)∈Z^2   α\m   1      2       3        4         5  0,20    5     10    15      20      25  0,35    3      6       9       12      15  0,50    2      4       6        8        10

$${p}_{\mathrm{0}} \left({n}\right)={xn} \\ $$$${r}\left({n}\right)=\alpha{xn} \\ $$$${p}_{\mathrm{1}} \left({n}\right)={p}_{\mathrm{0}} \left({n}\right)−{r}\left({n}\right)=\left(\mathrm{1}−\alpha\right){xn} \\ $$$${r}\left({n}\right)\geqslant{p}_{\mathrm{0}} \left({m}\right) \\ $$$$\alpha{xn}\geqslant{xm}\:\:\:\:\:\:\:\:\:\:\:\:{x}>\mathrm{0} \\ $$$${n}\geqslant\frac{{m}}{\alpha}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha>\mathrm{0} \\ $$$${p}_{\mathrm{0}} \left({n}\right)\geqslant\frac{{xm}}{\alpha} \\ $$$${r}_{\mathrm{0}} \left({n}\right)\geqslant{xm} \\ $$$${p}_{\mathrm{1}} \left({n}\right)\geqslant\frac{\left(\mathrm{1}−\alpha\right){xm}}{\alpha} \\ $$$$\left({n},{m}\right)\in\mathbb{Z}^{\mathrm{2}} \\ $$$$\alpha\backslash{m}\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\:\:\:\:\mathrm{5} \\ $$$$\mathrm{0},\mathrm{20}\:\:\:\:\mathrm{5}\:\:\:\:\:\mathrm{10}\:\:\:\:\mathrm{15}\:\:\:\:\:\:\mathrm{20}\:\:\:\:\:\:\mathrm{25} \\ $$$$\mathrm{0},\mathrm{35}\:\:\:\:\mathrm{3}\:\:\:\:\:\:\mathrm{6}\:\:\:\:\:\:\:\mathrm{9}\:\:\:\:\:\:\:\mathrm{12}\:\:\:\:\:\:\mathrm{15} \\ $$$$\mathrm{0},\mathrm{50}\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\:\:\mathrm{6}\:\:\:\:\:\:\:\:\mathrm{8}\:\:\:\:\:\:\:\:\mathrm{10} \\ $$

Answered by 123456 last updated on 18/Sep/15

Σ_(n=0) ^∞ x^n =(1/(1−x))  Π_(p∈P) (1/(1−p^(−s) ))=Π_(p∈P) Σ_(n=0) ^∞ p^(−sn) =Σ_(n=1) ^∞ n^(−s) ,s>1

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\underset{{p}\in\mathbb{P}} {\prod}\frac{\mathrm{1}}{\mathrm{1}−{p}^{−{s}} }=\underset{{p}\in\mathbb{P}} {\prod}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{p}^{−{sn}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{−{s}} ,{s}>\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com