Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 176211 by adhigenz last updated on 15/Sep/22

Answered by mahdipoor last updated on 15/Sep/22

2021((cos(a+b))/(cosa))sinb=((sina)/(cosa))  2021((cosa.cosb−sina.sinb)/(cosa))sinb=tana  2021cosb.sinb−2021tana.sin^2 b=tana  ⇒tana=((2021cosb.sinb)/(1+2021sin^2 b))=f(b)  max f = max tana   { ((cosb.sinb=((sin2b)/2))),((sin^2 b=((1−cos2b)/2))) :}⇒  f(b)=((sin(2b))/(((2023)/(2021))−cos(2b)))      (get((2023)/(2021))=c)  (df/db)=0 ⇒ cos(2b)=(1/c)  ⇒ sin(2b)=((√(c^2 −1))/c)  max f=(((√(c^2 −1))/c)/(c−1/c))=((√(c^2 −1))/(c^2 −1))=((2021(√(2022)))/(4044))

$$\mathrm{2021}\frac{{cos}\left({a}+{b}\right)}{{cosa}}{sinb}=\frac{{sina}}{{cosa}} \\ $$$$\mathrm{2021}\frac{{cosa}.{cosb}−{sina}.{sinb}}{{cosa}}{sinb}={tana} \\ $$$$\mathrm{2021}{cosb}.{sinb}−\mathrm{2021}{tana}.{sin}^{\mathrm{2}} {b}={tana} \\ $$$$\Rightarrow{tana}=\frac{\mathrm{2021}{cosb}.{sinb}}{\mathrm{1}+\mathrm{2021}{sin}^{\mathrm{2}} {b}}={f}\left({b}\right) \\ $$$${max}\:{f}\:=\:{max}\:{tana} \\ $$$$\begin{cases}{{cosb}.{sinb}=\frac{{sin}\mathrm{2}{b}}{\mathrm{2}}}\\{{sin}^{\mathrm{2}} {b}=\frac{\mathrm{1}−{cos}\mathrm{2}{b}}{\mathrm{2}}}\end{cases}\Rightarrow \\ $$$${f}\left({b}\right)=\frac{{sin}\left(\mathrm{2}{b}\right)}{\frac{\mathrm{2023}}{\mathrm{2021}}−{cos}\left(\mathrm{2}{b}\right)}\:\:\:\:\:\:\left({get}\frac{\mathrm{2023}}{\mathrm{2021}}={c}\right) \\ $$$$\frac{{df}}{{db}}=\mathrm{0}\:\Rightarrow\:{cos}\left(\mathrm{2}{b}\right)=\frac{\mathrm{1}}{{c}}\:\:\Rightarrow\:{sin}\left(\mathrm{2}{b}\right)=\frac{\sqrt{{c}^{\mathrm{2}} −\mathrm{1}}}{{c}} \\ $$$${max}\:{f}=\frac{\sqrt{{c}^{\mathrm{2}} −\mathrm{1}}/{c}}{{c}−\mathrm{1}/{c}}=\frac{\sqrt{{c}^{\mathrm{2}} −\mathrm{1}}}{{c}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{2021}\sqrt{\mathrm{2022}}}{\mathrm{4044}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com