Question Number 176199 by infinityaction last updated on 14/Sep/22 | ||
Answered by mr W last updated on 15/Sep/22 | ||
$$\left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} {x}^{{k}} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} {x}^{{k}+\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{{t}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} \int_{\mathrm{0}} ^{{t}} {x}^{{k}+\mathrm{2}} {dx} \\ $$$$\int_{\mathrm{0}} ^{{t}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{C}_{{k}} ^{{n}} {t}^{{k}+\mathrm{3}} }{\left({k}+\mathrm{3}\right)} \\ $$$$\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\int_{\mathrm{0}} ^{{t}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{C}_{{k}} ^{{n}} {t}^{{k}} }{\left({k}+\mathrm{3}\right)} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{{n}} \\ $$$${n}^{\mathrm{3}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{C}_{{k}} ^{{n}} }{\left({k}+\mathrm{3}\right){n}^{{k}} }=\Phi \\ $$$$\Phi={n}^{\mathrm{3}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx} \\ $$$$\Phi=\frac{\left({n}+\mathrm{1}\right)\left({n}^{\mathrm{2}} +{n}+\mathrm{2}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −\mathrm{2}{n}^{\mathrm{3}} }{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)} \\ $$$$\Phi=\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}+\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −\mathrm{2}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{3}}{{n}}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\Phi={e}−\mathrm{2}\:\checkmark \\ $$ | ||
Commented by infinityaction last updated on 16/Sep/22 | ||
$${thank}\:{you}\:{sir} \\ $$ | ||
Commented by Tawa11 last updated on 18/Sep/22 | ||
$$\mathrm{Great}\:\mathrm{sir} \\ $$ | ||