Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 176199 by infinityaction last updated on 14/Sep/22

Answered by mr W last updated on 15/Sep/22

(1+x)^n =Σ_(k=0) ^n C_k ^n x^k   (1+x)^n x^2 =Σ_(k=0) ^n C_k ^n x^(k+2)   ∫_0 ^t (1+x)^n x^2 dx=Σ_(k=0) ^n C_k ^n ∫_0 ^t x^(k+2) dx  ∫_0 ^t (1+x)^n x^2 dx=Σ_(k=0) ^n ((C_k ^n t^(k+3) )/((k+3)))  (1/t^3 )∫_0 ^t (1+x)^n x^2 dx=Σ_(k=0) ^n ((C_k ^n t^k )/((k+3)))  let t=(1/n)  n^3 ∫_0 ^(1/n) (1+x)^n x^2 dx=Σ_(k=0) ^n (C_k ^n /((k+3)n^k ))=Φ  Φ=n^3 ∫_0 ^(1/n) (1+x)^n x^2 dx  Φ=(((n+1)(n^2 +n+2)(1+(1/n))^n −2n^3 )/((n+1)(n+2)(n+3)))  Φ=(((1+(1/n))(1+(1/n)+(2/n^2 ))(1+(1/n))^n −2)/((1+(1/n))(1+(2/n))(1+(3/n))))  lim_(n→∞) Φ=e−2 ✓

$$\left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} {x}^{{k}} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} {x}^{{k}+\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{{t}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{k}} ^{{n}} \int_{\mathrm{0}} ^{{t}} {x}^{{k}+\mathrm{2}} {dx} \\ $$$$\int_{\mathrm{0}} ^{{t}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{C}_{{k}} ^{{n}} {t}^{{k}+\mathrm{3}} }{\left({k}+\mathrm{3}\right)} \\ $$$$\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\int_{\mathrm{0}} ^{{t}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{C}_{{k}} ^{{n}} {t}^{{k}} }{\left({k}+\mathrm{3}\right)} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{{n}} \\ $$$${n}^{\mathrm{3}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{C}_{{k}} ^{{n}} }{\left({k}+\mathrm{3}\right){n}^{{k}} }=\Phi \\ $$$$\Phi={n}^{\mathrm{3}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \left(\mathrm{1}+{x}\right)^{{n}} {x}^{\mathrm{2}} {dx} \\ $$$$\Phi=\frac{\left({n}+\mathrm{1}\right)\left({n}^{\mathrm{2}} +{n}+\mathrm{2}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −\mathrm{2}{n}^{\mathrm{3}} }{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)} \\ $$$$\Phi=\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}+\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −\mathrm{2}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{3}}{{n}}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\Phi={e}−\mathrm{2}\:\checkmark \\ $$

Commented by infinityaction last updated on 16/Sep/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by Tawa11 last updated on 18/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com