Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 176014 by cherokeesay last updated on 11/Sep/22

Commented by cherokeesay last updated on 11/Sep/22

The triangle ABC is right-angled at B.

$${The}\:{triangle}\:{ABC}\:{is}\:{right}-{angled}\:{at}\:{B}. \\ $$

Answered by cortano1 last updated on 11/Sep/22

Commented by cherokeesay last updated on 11/Sep/22

nice thank you sir.

$${nice}\:{thank}\:{you}\:{sir}. \\ $$

Answered by som(math1967) last updated on 11/Sep/22

 ((OB)/(AB))=tan30  ⇒AB=(√(3 ))⇒ AC =(√(3+2^2 ))=(√7)  △ABC∼△OHC   ∴  ((area △OHC)/(area△ABC))=((OC^2 )/(AC^2 ))=(1/7)  ∴ar.△OHC=(1/7)△ABC                       =(1/7)×(1/2)×2×(√3)=((√3)/7)sq unit  ar. of △AOC=(1/2)△ABC [OC=OB]                              =((√3)/2) sq unit  ∴ area of △AHO=((√3)/2) −((√3)/7)                          =((5(√3))/(14))squnit

$$\:\frac{{OB}}{{AB}}={tan}\mathrm{30} \\ $$$$\Rightarrow{AB}=\sqrt{\mathrm{3}\:}\Rightarrow\:{AC}\:=\sqrt{\mathrm{3}+\mathrm{2}^{\mathrm{2}} }=\sqrt{\mathrm{7}} \\ $$$$\bigtriangleup{ABC}\sim\bigtriangleup{OHC} \\ $$$$\:\therefore\:\:\frac{{area}\:\bigtriangleup{OHC}}{{area}\bigtriangleup{ABC}}=\frac{{OC}^{\mathrm{2}} }{{AC}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{7}} \\ $$$$\therefore{ar}.\bigtriangleup{OHC}=\frac{\mathrm{1}}{\mathrm{7}}\bigtriangleup{ABC} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{7}}×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\sqrt{\mathrm{3}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{7}}{sq}\:{unit} \\ $$$${ar}.\:{of}\:\bigtriangleup{AOC}=\frac{\mathrm{1}}{\mathrm{2}}\bigtriangleup{ABC}\:\left[{OC}={OB}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{sq}\:{unit} \\ $$$$\therefore\:{area}\:{of}\:\bigtriangleup{AHO}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:−\frac{\sqrt{\mathrm{3}}}{\mathrm{7}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{14}}{squnit} \\ $$$$\: \\ $$

Commented by cortano1 last updated on 11/Sep/22

typo sir. ((√3)/2)−((√3)/7) = ((5(√3))/(14))

$$\mathrm{typo}\:\mathrm{sir}.\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{7}}\:=\:\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{14}} \\ $$

Commented by som(math1967) last updated on 11/Sep/22

yes sir thank you

$${yes}\:{sir}\:{thank}\:{you} \\ $$

Commented by cherokeesay last updated on 11/Sep/22

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Answered by mr W last updated on 11/Sep/22

AB=(√3)  AC=(√7)  ΔABC=((2×(√3))/2)=(√3)  ΔABO=((1×(√3))/2)=((√3)/2)  ΔOHC=((1/( (√7))))^2 ×(√3)=((√3)/7)  ⇒ΔAHO=(√3)−((√3)/2)−((√3)/7)=((5(√3))/(14)) ✓

$${AB}=\sqrt{\mathrm{3}} \\ $$$${AC}=\sqrt{\mathrm{7}} \\ $$$$\Delta{ABC}=\frac{\mathrm{2}×\sqrt{\mathrm{3}}}{\mathrm{2}}=\sqrt{\mathrm{3}} \\ $$$$\Delta{ABO}=\frac{\mathrm{1}×\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Delta{OHC}=\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}}}\right)^{\mathrm{2}} ×\sqrt{\mathrm{3}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{7}} \\ $$$$\Rightarrow\Delta{AHO}=\sqrt{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{7}}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{14}}\:\checkmark \\ $$

Commented by cortano1 last updated on 11/Sep/22

why (√5) ?

$$\mathrm{why}\:\sqrt{\mathrm{5}}\:? \\ $$

Commented by mr W last updated on 11/Sep/22

typo

$${typo} \\ $$

Commented by cherokeesay last updated on 11/Sep/22

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Commented by Tawa11 last updated on 15/Sep/22

Great sirs

$$\mathrm{Great}\:\mathrm{sirs} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com