Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 171620 by mokys last updated on 18/Jun/22

Commented by mokys last updated on 18/Jun/22

how can it proved

$${how}\:{can}\:{it}\:{proved} \\ $$

Commented by puissant last updated on 20/Jun/22

Σ_(i=1) ^n t^2 = t^2  Σ_(i=1) ^n  = nt^2 .

$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{t}^{\mathrm{2}} =\:{t}^{\mathrm{2}} \:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:=\:{nt}^{\mathrm{2}} . \\ $$

Commented by kaivan.ahmadi last updated on 20/Jun/22

Σ_(i=1) ^n t^2 =1+2^2 +...+(n−1)^2 +n^2 =  (Σ_(i=1) ^(n−1) t^2 )+n^2 =Σ_(i=1) ^(n−1) t^2 +n^2

$$\sum_{{i}=\mathrm{1}} ^{{n}} {t}^{\mathrm{2}} =\mathrm{1}+\mathrm{2}^{\mathrm{2}} +...+\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} = \\ $$$$\left(\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} {t}^{\mathrm{2}} \right)+{n}^{\mathrm{2}} =\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} {t}^{\mathrm{2}} +{n}^{\mathrm{2}} \\ $$

Commented by puissant last updated on 20/Jun/22

Σ_(i=1) ^n i^2  = 1^2 +2^2 +....+(n−2)^2 +(n−1)^2 +n^2              = Σ_(i=1) ^(n−1) i^2 + n^2              = ((n(n+1)(2n+1))/6)

$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{i}^{\mathrm{2}} \:=\:\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +....+\left({n}−\mathrm{2}\right)^{\mathrm{2}} +\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{i}^{\mathrm{2}} +\:{n}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com