Question Number 171253 by vonem1 last updated on 11/Jun/22 | ||
Answered by haladu last updated on 11/Jun/22 | ||
$$\:\mathrm{8}\int_{\mathrm{1}} ^{\mathrm{4}} \:\boldsymbol{\mathrm{t}}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:\boldsymbol{\mathrm{dt}}\:−\mathrm{12}\:\:\int\:\boldsymbol{\mathrm{t}}^{\frac{\mathrm{3}}{\mathrm{2}}} \:\:\boldsymbol{\mathrm{dt}} \\ $$$$\:\:\: \\ $$$$\:\:\mathrm{8}\:\:\:\frac{\boldsymbol{\mathrm{t}}^{−\frac{\mathrm{1}}{\mathrm{2}}\:+\mathrm{1}} }{−\frac{\mathrm{1}}{\mathrm{2}}\:+\mathrm{1}}\:\:−\mathrm{12}\:\:\:\frac{\boldsymbol{\mathrm{t}}^{\frac{\mathrm{3}}{\mathrm{2}}\:+\mathrm{1}} }{\frac{\mathrm{3}}{\mathrm{2}}\:+\mathrm{1}}\:\:+\:\boldsymbol{\mathrm{C}} \\ $$$$\:\:\: \\ $$$$\:\:\mathrm{8}\:\:\:\frac{\boldsymbol{\mathrm{t}}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\frac{\mathrm{1}}{\mathrm{2}}}\:\:−\mathrm{12}\:\:\frac{\boldsymbol{\mathrm{t}}^{\frac{\mathrm{5}}{\mathrm{2}}} }{\frac{\mathrm{5}}{\mathrm{2}}}\:+\:\:\boldsymbol{\mathrm{C}}\:\underset{\mathrm{1}} {\overset{\mathrm{4}} {\mid}} \\ $$$$\:\: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\mathrm{16}\:\left(\:\mathrm{4}^{\frac{\mathrm{1}}{\mathrm{2}}} \:−\mathrm{1}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\:−\frac{\mathrm{24}}{\mathrm{5}}\:\left(\:\mathrm{4}^{\frac{\mathrm{3}}{\mathrm{2}}} \:−\mathrm{1}^{\frac{\mathrm{3}}{\mathrm{2}}} \right) \\ $$$$\:\: \\ $$$$\:=\:\mathrm{16}\:\left(\:\mathrm{2}−\mathrm{1}\:\right)\:−\frac{\mathrm{24}}{\mathrm{5}}\:\left(\:\mathrm{8}\:−\mathrm{1}\:\right) \\ $$$$\:\: \\ $$$$=\:\:\:\mathrm{16}\:\:−\frac{\mathrm{24}×\mathrm{7}}{\mathrm{5}} \\ $$$$\:\: \\ $$$$\:=\:\:\frac{\mathrm{16}×\mathrm{5}−\mathrm{24}×\mathrm{7}}{\mathrm{5}}\:=\:\:\frac{−\mathrm{88}}{\mathrm{5}} \\ $$ | ||
Answered by thfchristopher last updated on 11/Jun/22 | ||
$$=\int_{\mathrm{1}} ^{\mathrm{4}} \left(\mathrm{8}{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{12}{t}^{\frac{\mathrm{3}}{\mathrm{2}}} \right){dt} \\ $$$$=\left[\mathrm{16}{t}^{\frac{\mathrm{1}}{\mathrm{2}}} −\frac{\mathrm{24}}{\mathrm{5}}{t}^{\frac{\mathrm{5}}{\mathrm{2}}} \right]_{\mathrm{1}} ^{\mathrm{4}} \\ $$$$=\mathrm{32}−\frac{\mathrm{768}}{\mathrm{5}}−\mathrm{16}+\frac{\mathrm{24}}{\mathrm{5}} \\ $$$$=−\frac{\mathrm{664}}{\mathrm{5}} \\ $$ | ||