Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 168906 by cortano1 last updated on 21/Apr/22

Answered by mr W last updated on 21/Apr/22

tan (B/2)=((b/c)/(1+(a/c)))=(b/(a+c))=(b/(a+(√(a^2 +b^2 ))))  tan (A/2)=((a/c)/(1+(b/c)))=(a/(b+c))=(a/(b+(√(a^2 +b^2 ))))  (r/(tan (B/2)))+(r/(tan (A/2)))+(n−1)r=c=(√(a^2 +b^2 ))  r[((a+(√(a^2 +b^2 )))/b)+((b+(√(a^2 +b^2 )))/a)+n−1]=(√(a^2 +b^2 ))  ⇒r=((√(a^2 +b^2 ))/(((a+(√(a^2 +b^2 )))/b)+((b+(√(a^2 +b^2 )))/a)+n−1))

$$\mathrm{tan}\:\frac{{B}}{\mathrm{2}}=\frac{\frac{{b}}{{c}}}{\mathrm{1}+\frac{{a}}{{c}}}=\frac{{b}}{{a}+{c}}=\frac{{b}}{{a}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\mathrm{tan}\:\frac{{A}}{\mathrm{2}}=\frac{\frac{{a}}{{c}}}{\mathrm{1}+\frac{{b}}{{c}}}=\frac{{a}}{{b}+{c}}=\frac{{a}}{{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\frac{{r}}{\mathrm{tan}\:\frac{{B}}{\mathrm{2}}}+\frac{{r}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}}+\left({n}−\mathrm{1}\right){r}={c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${r}\left[\frac{{a}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{b}}+\frac{{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{a}}+{n}−\mathrm{1}\right]=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{r}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\frac{{a}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{b}}+\frac{{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{a}}+{n}−\mathrm{1}} \\ $$

Commented by Tawa11 last updated on 21/Apr/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by cortano1 last updated on 22/Apr/22

waw...great

$${waw}...{great} \\ $$

Commented by peter frank last updated on 26/Apr/22

first,second line.why  1+(a/c) ,1+(b/c) ?

$$\mathrm{first},\mathrm{second}\:\mathrm{line}.\mathrm{why}\:\:\mathrm{1}+\frac{\mathrm{a}}{\mathrm{c}}\:,\mathrm{1}+\frac{\mathrm{b}}{\mathrm{c}}\:? \\ $$

Commented by mr W last updated on 26/Apr/22

tan (θ/2)=((sin θ)/(1+cos θ))

$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{cos}\:\theta} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com