Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167823 by cortano1 last updated on 26/Mar/22

Commented by dangduomg last updated on 26/Mar/22

actually very long answer

$$\mathrm{actually}\:\mathrm{very}\:\mathrm{long}\:\mathrm{answer} \\ $$

Commented by MJS_new last updated on 26/Mar/22

a first steps  ∫((ln (1+(√(x^2 −(1/3)))))/(x(√(x^2 −(1/3)))))dx=       [t=1+(√(x^2 −(1/3))) → dx=((√(x^2 −(1/3)))/x)dt]  =∫((ln t)/(t^2 −2t+(4/3)))dt=  =∫((ln t)/((t−1−((√3)/3)i)(t−1+((√3)/3)i)))dt=...  this can be solved but it takes some time...  ((ln t)/((t−a)(t−b)))=((ln t)/((a−b)(t−a)))+((ln t)/((b−a)(t−b)))  ...

$$\mathrm{a}\:\mathrm{first}\:\mathrm{steps} \\ $$$$\int\frac{\mathrm{ln}\:\left(\mathrm{1}+\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{1}+\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}}{{x}}{dt}\right] \\ $$$$=\int\frac{\mathrm{ln}\:{t}}{{t}^{\mathrm{2}} −\mathrm{2}{t}+\frac{\mathrm{4}}{\mathrm{3}}}{dt}= \\ $$$$=\int\frac{\mathrm{ln}\:{t}}{\left({t}−\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{i}\right)\left({t}−\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{i}\right)}{dt}=... \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{but}\:\mathrm{it}\:\mathrm{takes}\:\mathrm{some}\:\mathrm{time}... \\ $$$$\frac{\mathrm{ln}\:{t}}{\left({t}−{a}\right)\left({t}−{b}\right)}=\frac{\mathrm{ln}\:{t}}{\left({a}−{b}\right)\left({t}−{a}\right)}+\frac{\mathrm{ln}\:{t}}{\left({b}−{a}\right)\left({t}−{b}\right)} \\ $$$$... \\ $$

Answered by Mathspace last updated on 27/Mar/22

f(a)=∫((ln(1+a(√(x^2 −(1/3)))))/(x(√(x^2 −(1/3)))))dx ⇒  f^′ (a)=∫   (1/(x(1+a(√(x^2 −(1/3))))))dx  =_(x=(1/( (√3)))cht)   ∫  (1/( (√3).(1/( (√3)))cht(1+a(1/( (√3)))sht)))sht dt  =(√3)∫   ((sht)/(cht((√3)+asht)))dt  =(√3)∫  (((e^t −e^(−t) )/2)/(((e^t +e^(−t) )/2)((√3)+a((e^t −e^(−t) )/2))))dt  =2(√3)∫     ((e^t −e^(−t) )/((e^t +e^(−t) )(2(√3)+ae^t −ae^(−t) )))dt  =_(e^t =z)    ∫  ((z−z^(−1) )/((z+z^(−1) )(2(√3)+az−az^(−1) )))(dz/z)  =∫  ((z(z−z^(−1) ))/(z(z+z^(−1) )z(2(√3)+az−az^(−1) )))dz  =∫  ((z^2 −1)/((z^2 +1)(2(√3)z+az^2 −a)))dz  we decompose  F(z)=((z^2 −1)/((z^2 +1)(az^2 +2(√3)z−a)))  roots of az^2 +2(√3)z−a  Δ^′ =3+a^2  ⇒z_1 =((−(√3)+(√(a^2 +3)))/a)  z_2 =((−(√3)−(√(a^2 +3)))/a)  F(z)=((αz+β)/(z^2 +1))+(c_1 /(z−z_1 ))+(c_2 /(z−z_2 ))  ....be continued...

$${f}\left({a}\right)=\int\frac{{ln}\left(\mathrm{1}+{a}\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}}{dx}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)=\int\:\:\:\frac{\mathrm{1}}{{x}\left(\mathrm{1}+{a}\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}\right)}{dx} \\ $$$$=_{{x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{cht}} \:\:\int\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{cht}\left(\mathrm{1}+{a}\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{sht}\right)}{sht}\:{dt} \\ $$$$=\sqrt{\mathrm{3}}\int\:\:\:\frac{{sht}}{{cht}\left(\sqrt{\mathrm{3}}+{asht}\right)}{dt} \\ $$$$=\sqrt{\mathrm{3}}\int\:\:\frac{\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}}}{\frac{{e}^{{t}} +{e}^{−{t}} }{\mathrm{2}}\left(\sqrt{\mathrm{3}}+{a}\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}}\right)}{dt} \\ $$$$=\mathrm{2}\sqrt{\mathrm{3}}\int\:\:\:\:\:\frac{{e}^{{t}} −{e}^{−{t}} }{\left({e}^{{t}} +{e}^{−{t}} \right)\left(\mathrm{2}\sqrt{\mathrm{3}}+{ae}^{{t}} −{ae}^{−{t}} \right)}{dt} \\ $$$$=_{{e}^{{t}} ={z}} \:\:\:\int\:\:\frac{{z}−{z}^{−\mathrm{1}} }{\left({z}+{z}^{−\mathrm{1}} \right)\left(\mathrm{2}\sqrt{\mathrm{3}}+{az}−{az}^{−\mathrm{1}} \right)}\frac{{dz}}{{z}} \\ $$$$=\int\:\:\frac{{z}\left({z}−{z}^{−\mathrm{1}} \right)}{{z}\left({z}+{z}^{−\mathrm{1}} \right){z}\left(\mathrm{2}\sqrt{\mathrm{3}}+{az}−{az}^{−\mathrm{1}} \right)}{dz} \\ $$$$=\int\:\:\frac{{z}^{\mathrm{2}} −\mathrm{1}}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{2}\sqrt{\mathrm{3}}{z}+{az}^{\mathrm{2}} −{a}\right)}{dz} \\ $$$${we}\:{decompose} \\ $$$${F}\left({z}\right)=\frac{{z}^{\mathrm{2}} −\mathrm{1}}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)\left({az}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}{z}−{a}\right)} \\ $$$${roots}\:{of}\:{az}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}{z}−{a} \\ $$$$\Delta^{'} =\mathrm{3}+{a}^{\mathrm{2}} \:\Rightarrow{z}_{\mathrm{1}} =\frac{−\sqrt{\mathrm{3}}+\sqrt{{a}^{\mathrm{2}} +\mathrm{3}}}{{a}} \\ $$$${z}_{\mathrm{2}} =\frac{−\sqrt{\mathrm{3}}−\sqrt{{a}^{\mathrm{2}} +\mathrm{3}}}{{a}} \\ $$$${F}\left({z}\right)=\frac{\alpha{z}+\beta}{{z}^{\mathrm{2}} +\mathrm{1}}+\frac{{c}_{\mathrm{1}} }{{z}−{z}_{\mathrm{1}} }+\frac{{c}_{\mathrm{2}} }{{z}−{z}_{\mathrm{2}} } \\ $$$$....{be}\:{continued}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com