Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 167594 by infinityaction last updated on 20/Mar/22

Answered by som(math1967) last updated on 20/Mar/22

cosx+cosy+cosz=pcos(x+y+z)  cosxcos(x+y+z)+cosycos(x+y+z)  +coszcos(x+y+z)=pcos^2 (x+y+z)  ........case  i)  same way  sinxsin(x+y+z)+sinysin(x+y+z)  +sinzsin(x+y+z)=psin^2 (x+y+z)  .......case ii)  casei)+caseii)  cosxcos(x+y+z)+sinxsin(x+y+z)  +cosycos(x+y+z)+sinysin(x+y+z)  coszcos(x+y+z)+sinzsin(x+y+z)  =p{sin^2 (x+y+z)+cos^2 (x+y+z)}  cos(x+y+z−x)+cos(x+y+z−y)  +cos(x+y+z−z)=p×1  ∴cos(x+y)+cos(y+z)+cos(z+x)=p

$${cosx}+{cosy}+{cosz}={pcos}\left({x}+{y}+{z}\right) \\ $$$${cosxcos}\left({x}+{y}+{z}\right)+{cosycos}\left({x}+{y}+{z}\right) \\ $$$$+{coszcos}\left({x}+{y}+{z}\right)={pcos}^{\mathrm{2}} \left({x}+{y}+{z}\right) \\ $$$$\left.........{case}\:\:{i}\right) \\ $$$${same}\:{way} \\ $$$${sinxsin}\left({x}+{y}+{z}\right)+{sinysin}\left({x}+{y}+{z}\right) \\ $$$$+{sinzsin}\left({x}+{y}+{z}\right)={psin}^{\mathrm{2}} \left({x}+{y}+{z}\right) \\ $$$$\left........{case}\:{ii}\right) \\ $$$$\left.{c}\left.{asei}\right)+{caseii}\right) \\ $$$${cosxcos}\left({x}+{y}+{z}\right)+{sinxsin}\left({x}+{y}+{z}\right) \\ $$$$+{cosycos}\left({x}+{y}+{z}\right)+{sinysin}\left({x}+{y}+{z}\right) \\ $$$${coszcos}\left({x}+{y}+{z}\right)+{sinzsin}\left({x}+{y}+{z}\right) \\ $$$$={p}\left\{{sin}^{\mathrm{2}} \left({x}+{y}+{z}\right)+{cos}^{\mathrm{2}} \left({x}+{y}+{z}\right)\right\} \\ $$$${cos}\left({x}+{y}+{z}−{x}\right)+{cos}\left({x}+{y}+{z}−{y}\right) \\ $$$$+{cos}\left({x}+{y}+{z}−{z}\right)={p}×\mathrm{1} \\ $$$$\therefore\boldsymbol{{cos}}\left(\boldsymbol{{x}}+\boldsymbol{{y}}\right)+\boldsymbol{{cos}}\left(\boldsymbol{{y}}+\boldsymbol{{z}}\right)+\boldsymbol{{cos}}\left(\boldsymbol{{z}}+\boldsymbol{{x}}\right)=\boldsymbol{{p}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com