Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 167393 by DrHZ last updated on 15/Mar/22

Answered by mindispower last updated on 15/Mar/22

∫_0 ^(2π) (((1+e^(ix) +e^(−ix) )^n e^(inx) )/(3+e^(ix) +e^(−ix) ))dx=I_n   we want Real I_n   =∫_0 ^(2π) (((e^(2ix) +1+e^(ix) )^n e^(ix) )/(e^(2ix) +1+3e^(ix) ))dx  u=e^(ix)   =∫_C_1  (((x^2 +x+1)^n )/(x^2 +3x+1))dx=−i∫_C_1  f(x)dx  C_1 ={z∈C;∣z∣≤1}  x^2 +3x+1=0⇒x=((−3−^+ (√5))/2)  ∣((−3+(√5))/2)=a∣<1  I_n =2iπRes(−if,a)  =2π((((a^2 +a+1)^n )/(2a+3)))=2π((((−2a)^n )/(2a+3)))  Re(I_n )=((2π)/(2a+3))(−2a)^n =((2π)/( (√5)))((√5)−3)^n

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\left(\mathrm{1}+{e}^{{ix}} +{e}^{−{ix}} \right)^{{n}} {e}^{{inx}} }{\mathrm{3}+{e}^{{ix}} +{e}^{−{ix}} }{dx}={I}_{{n}} \\ $$$${we}\:{want}\:{Real}\:{I}_{{n}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\left({e}^{\mathrm{2}{ix}} +\mathrm{1}+{e}^{{ix}} \right)^{{n}} {e}^{{ix}} }{{e}^{\mathrm{2}{ix}} +\mathrm{1}+\mathrm{3}{e}^{{ix}} }{dx} \\ $$$${u}={e}^{{ix}} \\ $$$$=\int_{{C}_{\mathrm{1}} } \frac{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{{n}} }{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}}{dx}=−{i}\int_{{C}_{\mathrm{1}} } {f}\left({x}\right){dx} \\ $$$${C}_{\mathrm{1}} =\left\{{z}\in\mathbb{C};\mid{z}\mid\leqslant\mathrm{1}\right\} \\ $$$${x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}=\mathrm{0}\Rightarrow{x}=\frac{−\mathrm{3}\overset{+} {−}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mid\frac{−\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}={a}\mid<\mathrm{1} \\ $$$${I}_{{n}} =\mathrm{2}{i}\pi{Res}\left(−{if},{a}\right) \\ $$$$=\mathrm{2}\pi\left(\frac{\left({a}^{\mathrm{2}} +{a}+\mathrm{1}\right)^{{n}} }{\mathrm{2}{a}+\mathrm{3}}\right)=\mathrm{2}\pi\left(\frac{\left(−\mathrm{2}{a}\right)^{{n}} }{\mathrm{2}{a}+\mathrm{3}}\right) \\ $$$${Re}\left({I}_{{n}} \right)=\frac{\mathrm{2}\pi}{\mathrm{2}{a}+\mathrm{3}}\left(−\mathrm{2}{a}\right)^{{n}} =\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{5}}}\left(\sqrt{\mathrm{5}}−\mathrm{3}\right)^{{n}} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com