Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 167158 by mnjuly1970 last updated on 08/Mar/22

Answered by mindispower last updated on 10/Mar/22

cos(3n)=4cos^3 (n)−3cos(n)⇒cos^3 (n)=((cos(3n)+3cos(n))/4)  Θ=(1/4)Re{Σ_(n≥1) (((−1)^(n−1) )/n^2 ).(e^(3in) +3e^(in) )}  =−(1/4)ReΣ_(n≥1) (((−e^(3i) )^n )/n^2 )−(3/4)ReΣ_(n≥1) (((−e^i )^n )/n^2 )  =−(1/4)(Re(Li_2 (−e^(3i) )+3Li_2 (−e^i ))  =−(1/8)(Li_2 (−e^(3i) )+Li_2 (−e^(−3i) )+3Li_2 (−e^i )+3Li_2 (−e^(−i) ))  li_2 (a)+li_2 ((1/a))=−ζ(2)−((ln^2 (−a))/2)  =−(1/8)(−ζ(2)−(1/2)ln^2 (e^(3i) )+3(−ζ(2)−(1/2)ln^2 (e^i ))  =((ζ(2))/2)−(1/8)(6)=(π^2 /(12))−(6/8)

$${cos}\left(\mathrm{3}{n}\right)=\mathrm{4}{cos}^{\mathrm{3}} \left({n}\right)−\mathrm{3}{cos}\left({n}\right)\Rightarrow{cos}^{\mathrm{3}} \left({n}\right)=\frac{{cos}\left(\mathrm{3}{n}\right)+\mathrm{3}{cos}\left({n}\right)}{\mathrm{4}} \\ $$$$\Theta=\frac{\mathrm{1}}{\mathrm{4}}{Re}\left\{\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} }.\left({e}^{\mathrm{3}{in}} +\mathrm{3}{e}^{{in}} \right)\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}{Re}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−{e}^{\mathrm{3}{i}} \right)^{{n}} }{{n}^{\mathrm{2}} }−\frac{\mathrm{3}}{\mathrm{4}}{Re}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−{e}^{{i}} \right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\left({Re}\left({Li}_{\mathrm{2}} \left(−{e}^{\mathrm{3}{i}} \right)+\mathrm{3}{Li}_{\mathrm{2}} \left(−{e}^{{i}} \right)\right)\right. \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\left({Li}_{\mathrm{2}} \left(−{e}^{\mathrm{3}{i}} \right)+{Li}_{\mathrm{2}} \left(−{e}^{−\mathrm{3}{i}} \right)+\mathrm{3}{Li}_{\mathrm{2}} \left(−{e}^{{i}} \right)+\mathrm{3}{Li}_{\mathrm{2}} \left(−{e}^{−{i}} \right)\right) \\ $$$${li}_{\mathrm{2}} \left({a}\right)+{li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}}\right)=−\zeta\left(\mathrm{2}\right)−\frac{{ln}^{\mathrm{2}} \left(−{a}\right)}{\mathrm{2}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\left(−\zeta\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left({e}^{\mathrm{3}{i}} \right)+\mathrm{3}\left(−\zeta\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left({e}^{{i}} \right)\right)\right. \\ $$$$=\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{6}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\mathrm{6}}{\mathrm{8}}\: \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 12/Mar/22

       very nice solution  sir          grateful sir power

$$\:\:\:\:\:\:\:{very}\:{nice}\:{solution}\:\:{sir} \\ $$$$\:\:\:\:\:\:\:\:{grateful}\:{sir}\:{power} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com