Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 167152 by cortano1 last updated on 08/Mar/22

Commented by som(math1967) last updated on 08/Mar/22

 x^2 =28 ?

$$\:{x}^{\mathrm{2}} =\mathrm{28}\:? \\ $$

Commented by cortano1 last updated on 08/Mar/22

yes

$$\mathrm{yes} \\ $$

Answered by som(math1967) last updated on 08/Mar/22

Commented by som(math1967) last updated on 08/Mar/22

let SB=l side of square=a  A=((al)/2)    2A=((a×AQ)/2)  ∴a×AQ=2al⇒AQ=2l  ∴BR=a−l   AR=a−2l   3A=(((a−l)(a−2l))/2)  ((3al)/2)=((a^2 −3al+2l^2 )/2)   ⇒a^2 −6al+2l^2 =0  ⇒(a^2 /l^2 ) −((6a)/l) +2=0  ∴ (a/l)=((6+(√(28)))/2)=3+(√7) [ ∵(a/l)>1 ∴ −ve rejected]  A=((al)/2)=(a^2 /(2(3+(√7))))  ar. of yellow △=Y(let)  Y=a^2 −6A  =a^2 −((3a^2 )/((3+(√7))))=(((√7)a^2 )/((3+(√7))))    (Y/A)=2(√7)⇒Y=2(√7)A  ∴x=2(√7) ⇒x^2 =28

$${let}\:{SB}={l}\:{side}\:{of}\:{square}={a} \\ $$$${A}=\frac{{al}}{\mathrm{2}}\:\: \\ $$$$\mathrm{2}{A}=\frac{{a}×{AQ}}{\mathrm{2}} \\ $$$$\therefore{a}×{AQ}=\mathrm{2}{al}\Rightarrow{AQ}=\mathrm{2}{l} \\ $$$$\therefore{BR}={a}−{l}\:\:\:{AR}={a}−\mathrm{2}{l} \\ $$$$\:\mathrm{3}{A}=\frac{\left({a}−{l}\right)\left({a}−\mathrm{2}{l}\right)}{\mathrm{2}} \\ $$$$\frac{\mathrm{3}{al}}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} −\mathrm{3}{al}+\mathrm{2}{l}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\Rightarrow{a}^{\mathrm{2}} −\mathrm{6}{al}+\mathrm{2}{l}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\frac{{a}^{\mathrm{2}} }{{l}^{\mathrm{2}} }\:−\frac{\mathrm{6}{a}}{{l}}\:+\mathrm{2}=\mathrm{0} \\ $$$$\therefore\:\frac{{a}}{{l}}=\frac{\mathrm{6}+\sqrt{\mathrm{28}}}{\mathrm{2}}=\mathrm{3}+\sqrt{\mathrm{7}}\:\left[\:\because\frac{{a}}{{l}}>\mathrm{1}\:\therefore\:−{ve}\:{rejected}\right] \\ $$$${A}=\frac{{al}}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{7}}\right)} \\ $$$${ar}.\:{of}\:{yellow}\:\bigtriangleup={Y}\left({let}\right) \\ $$$${Y}={a}^{\mathrm{2}} −\mathrm{6}{A} \\ $$$$={a}^{\mathrm{2}} −\frac{\mathrm{3}{a}^{\mathrm{2}} }{\left(\mathrm{3}+\sqrt{\mathrm{7}}\right)}=\frac{\sqrt{\mathrm{7}}{a}^{\mathrm{2}} }{\left(\mathrm{3}+\sqrt{\mathrm{7}}\right)} \\ $$$$\:\:\frac{{Y}}{{A}}=\mathrm{2}\sqrt{\mathrm{7}}\Rightarrow{Y}=\mathrm{2}\sqrt{\mathrm{7}}{A} \\ $$$$\therefore{x}=\mathrm{2}\sqrt{\mathrm{7}}\:\Rightarrow{x}^{\mathrm{2}} =\mathrm{28} \\ $$

Commented by Tawa11 last updated on 10/Mar/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com