Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 167027 by Tawa11 last updated on 04/Mar/22

Commented by cortano1 last updated on 05/Mar/22

  { ((log _8 (p+2)+log _8 q=r−(1/3))),((log _8 (p−2)−log _8 q=2r+1)) :}  ⇒(1)+(2)≡ log _8 (p^2 −4)=3r+(2/3)  ⇒p^2 −4=8^(3r+(2/3))   ⇒p^2 =4+2^(9r+2)   ⇒p^2 =4+4.512^r   ⇒p^2 =4(1+512^r )  ⇒p =2(√(1+512^r ))

$$\:\begin{cases}{\mathrm{log}\:_{\mathrm{8}} \left(\mathrm{p}+\mathrm{2}\right)+\mathrm{log}\:_{\mathrm{8}} \mathrm{q}=\mathrm{r}−\frac{\mathrm{1}}{\mathrm{3}}}\\{\mathrm{log}\:_{\mathrm{8}} \left(\mathrm{p}−\mathrm{2}\right)−\mathrm{log}\:_{\mathrm{8}} \mathrm{q}=\mathrm{2r}+\mathrm{1}}\end{cases} \\ $$$$\Rightarrow\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\equiv\:\mathrm{log}\:_{\mathrm{8}} \left(\mathrm{p}^{\mathrm{2}} −\mathrm{4}\right)=\mathrm{3r}+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{p}^{\mathrm{2}} −\mathrm{4}=\mathrm{8}^{\mathrm{3r}+\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$\Rightarrow\mathrm{p}^{\mathrm{2}} =\mathrm{4}+\mathrm{2}^{\mathrm{9r}+\mathrm{2}} \\ $$$$\Rightarrow\mathrm{p}^{\mathrm{2}} =\mathrm{4}+\mathrm{4}.\mathrm{512}^{\mathrm{r}} \\ $$$$\Rightarrow\mathrm{p}^{\mathrm{2}} =\mathrm{4}\left(\mathrm{1}+\mathrm{512}^{\mathrm{r}} \right) \\ $$$$\Rightarrow\mathrm{p}\:=\mathrm{2}\sqrt{\mathrm{1}+\mathrm{512}^{\mathrm{r}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com