Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 167010 by mnjuly1970 last updated on 04/Mar/22

Answered by LowLevelLump last updated on 04/Mar/22

h(x)=f(x−ln 2)+a  ln ((1/2)e^(2x) −e^x +1)=ln (e^(2(x−ln 2)) −e^(x−ln 2) +(1/2))+a  ln ((1/2)e^(2x) −e^x +1)=ln (e^(2x−ln 4) −e^(x−ln 2) +(1/2))+a  ln ((1/2)e^(2x) −e^x +1)=ln ((1/4)e^(2x) −(1/2)e^x +(1/2))+a  ln ((1/2)e^(2x) −e^x +1)=ln ((1/4)e^(2x) −(1/2)e^x +(1/2))+ln e^a     ln ((1/2)e^(2x) −e^x +1)=ln ((1/4)e^a e^(2x) −(1/2)e^a e^x +(1/2)e^a )  Let t=e^x , therefore  ln ((1/2)t^2 −t+1)=ln ((1/4)e^a t^2 −(1/2)e^a t+(1/2)e^a )  (1/2)t^2 −t+1=(1/4)e^a t^2 −(1/2)e^a t+(1/2)e^a   (1/2)t^2 −t+1=(1/2)e^a ((1/2)t^2 −t+1)  1=(1/2)e^a   e^a =2  e^a =e^(ln 2)   a=ln 2

$${h}\left({x}\right)={f}\left({x}−\mathrm{ln}\:\mathrm{2}\right)+{a} \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} −{e}^{{x}} +\mathrm{1}\right)=\mathrm{ln}\:\left({e}^{\mathrm{2}\left({x}−\mathrm{ln}\:\mathrm{2}\right)} −{e}^{{x}−\mathrm{ln}\:\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)+{a} \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} −{e}^{{x}} +\mathrm{1}\right)=\mathrm{ln}\:\left({e}^{\mathrm{2}{x}−\mathrm{ln}\:\mathrm{4}} −{e}^{{x}−\mathrm{ln}\:\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)+{a} \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} −{e}^{{x}} +\mathrm{1}\right)=\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{4}}{e}^{\mathrm{2}{x}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} +\frac{\mathrm{1}}{\mathrm{2}}\right)+{a} \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} −{e}^{{x}} +\mathrm{1}\right)=\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{4}}{e}^{\mathrm{2}{x}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} +\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{ln}\:{e}^{{a}} \\ $$$$ \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} −{e}^{{x}} +\mathrm{1}\right)=\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{4}}{e}^{{a}} {e}^{\mathrm{2}{x}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} {e}^{{x}} +\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} \right) \\ $$$${Let}\:{t}={e}^{{x}} ,\:{therefore} \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} −{t}+\mathrm{1}\right)=\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{4}}{e}^{{a}} {t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} {t}+\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} \right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} −{t}+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{4}}{e}^{{a}} {t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} {t}+\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} −{t}+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} \left(\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} −{t}+\mathrm{1}\right) \\ $$$$\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}}{e}^{{a}} \\ $$$${e}^{{a}} =\mathrm{2} \\ $$$${e}^{{a}} ={e}^{\mathrm{ln}\:\mathrm{2}} \\ $$$${a}=\mathrm{ln}\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com