Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 166580 by mkam last updated on 22/Feb/22

Answered by mahdipoor last updated on 22/Feb/22

1)  ⇒∣x∣≥∣2x+1∣⇒x^2 ≥4x^2 +4x+1⇒  0≥3x^2 +4x+1=(3x+1)(x+1)⇒  x∈[−1,−1/3]  2)  x−5=±(3x−1)⇒x=−2,3/2  3)  i) x<−5 ⇒ x+5<0 , 3x+1<0 ⇒  −(3x+1)>(x+5)x⇒0>x^2 +8x+1⇒  x∈(−4−(√(15)),−4+(√(15)))  ⇒x∈(−4−(√(15)),−5)  ii)−1/3≥x>−5 ⇒ x+5>0 , 3x+1<0 ⇒  −(3x+1)<x(x+5)⇒0<x^2 +8x+1 ⇒  x∈]−4−(√(15)),−4+(√(15))[  ⇒x∈∅  iii)x≥−1/3 ⇒x+5>0 , 3x+1>0 ⇒  (3x+1)<x(x+5)⇒0<x^2 +2x−1⇒  x∈(−1−(√2),−1+(√2))  ⇒x∈[−1/3,−1+(√2))  ⇒iii∪ii∪i⇒  x∈(−4−(√(15)),−5)∪[−1/3,−1+(√2))

$$\left.\mathrm{1}\right) \\ $$$$\Rightarrow\mid{x}\mid\geqslant\mid\mathrm{2}{x}+\mathrm{1}\mid\Rightarrow{x}^{\mathrm{2}} \geqslant\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\Rightarrow \\ $$$$\mathrm{0}\geqslant\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}=\left(\mathrm{3}{x}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)\Rightarrow \\ $$$${x}\in\left[−\mathrm{1},−\mathrm{1}/\mathrm{3}\right] \\ $$$$\left.\mathrm{2}\right) \\ $$$${x}−\mathrm{5}=\pm\left(\mathrm{3}{x}−\mathrm{1}\right)\Rightarrow{x}=−\mathrm{2},\mathrm{3}/\mathrm{2} \\ $$$$\left.\mathrm{3}\right) \\ $$$$\left.{i}\right)\:{x}<−\mathrm{5}\:\Rightarrow\:{x}+\mathrm{5}<\mathrm{0}\:,\:\mathrm{3}{x}+\mathrm{1}<\mathrm{0}\:\Rightarrow \\ $$$$−\left(\mathrm{3}{x}+\mathrm{1}\right)>\left({x}+\mathrm{5}\right){x}\Rightarrow\mathrm{0}>{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{1}\Rightarrow \\ $$$${x}\in\left(−\mathrm{4}−\sqrt{\mathrm{15}},−\mathrm{4}+\sqrt{\mathrm{15}}\right) \\ $$$$\Rightarrow{x}\in\left(−\mathrm{4}−\sqrt{\mathrm{15}},−\mathrm{5}\right) \\ $$$$\left.{ii}\right)−\mathrm{1}/\mathrm{3}\geqslant{x}>−\mathrm{5}\:\Rightarrow\:{x}+\mathrm{5}>\mathrm{0}\:,\:\mathrm{3}{x}+\mathrm{1}<\mathrm{0}\:\Rightarrow \\ $$$$−\left(\mathrm{3}{x}+\mathrm{1}\right)<{x}\left({x}+\mathrm{5}\right)\Rightarrow\mathrm{0}<{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{1}\:\Rightarrow \\ $$$$\left.{x}\in\right]−\mathrm{4}−\sqrt{\mathrm{15}},−\mathrm{4}+\sqrt{\mathrm{15}}\left[\right. \\ $$$$\Rightarrow{x}\in\varnothing \\ $$$$\left.{iii}\right){x}\geqslant−\mathrm{1}/\mathrm{3}\:\Rightarrow{x}+\mathrm{5}>\mathrm{0}\:,\:\mathrm{3}{x}+\mathrm{1}>\mathrm{0}\:\Rightarrow \\ $$$$\left(\mathrm{3}{x}+\mathrm{1}\right)<{x}\left({x}+\mathrm{5}\right)\Rightarrow\mathrm{0}<{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\Rightarrow \\ $$$${x}\in\left(−\mathrm{1}−\sqrt{\mathrm{2}},−\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$$\Rightarrow{x}\in\left[−\mathrm{1}/\mathrm{3},−\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$$\Rightarrow{iii}\cup{ii}\cup{i}\Rightarrow \\ $$$${x}\in\left(−\mathrm{4}−\sqrt{\mathrm{15}},−\mathrm{5}\right)\cup\left[−\mathrm{1}/\mathrm{3},−\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com