Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 166419 by ajfour last updated on 19/Feb/22

Commented by ajfour last updated on 19/Feb/22

Blue curve  y=x^3 −x  Red curve    y=(x−h)−(x−h)^3 +k  Find x= p  when  y=c.

$${Blue}\:{curve}\:\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${Red}\:{curve}\:\:\:\:{y}=\left({x}−{h}\right)−\left({x}−{h}\right)^{\mathrm{3}} +{k} \\ $$$${Find}\:{x}=\:{p}\:\:{when}\:\:{y}={c}. \\ $$

Answered by ajfour last updated on 20/Feb/22

y=(x−h)−(x−h)^3 +k  y=x^3 −x  subtracting for intersection points  2x−h−x^3 −(x−h)^3 +k=0  ⇒  2x^3 −3hx^2 +(3h^2 −2)x−h^3 +h+k=0  roots are  p,s,s  ⇒  2(x−s)^2 (x−p)=0  2x^3 −2(p+2s)x^2 +2s(2p+s)x        −2ps^2 =0  ⇒  p+2s=((3h)/2)      2s(2p+s)=3h^2 −2      2ps^2 =h^3 −h−k  ⇒  2s(2p+s)=3(((2p)/3)+((4s)/3))^2 −2  ⇒  12sp+6s^2 +6           =4p^2 +16s^2 +16sp  ⇒  4p^2 +4sp+10s^2 −6=0  ⇒ 4(p+c)+4sp^2 +2p(5s^2 −3)=0  ⇒  4p+4c+2p(5s^2 −3)               =4s^2 p+2s(5s^2 −3)  ⇒  p=((2s(5s^2 −3)−4c)/(2(5s^2 −3)−4s^2 +4))  or  p=((s(5s^2 −3)−2c)/(3s^2 −1))  4(5s^3 −3s−2c)^2 +4s(5s^3 −3s−2c)(3s^2 −1)     +2(5s^2 −3)(3s^2 −1)^2 =0  ⇒  250s^6 −290s^4 −104cs^3       +94x^2 +56cx+16c^2 −6=0  cannot we factorise this eq..?

$${y}=\left({x}−{h}\right)−\left({x}−{h}\right)^{\mathrm{3}} +{k} \\ $$$${y}={x}^{\mathrm{3}} −{x} \\ $$$${subtracting}\:{for}\:{intersection}\:{points} \\ $$$$\mathrm{2}{x}−{h}−{x}^{\mathrm{3}} −\left({x}−{h}\right)^{\mathrm{3}} +{k}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{2}{x}^{\mathrm{3}} −\mathrm{3}{hx}^{\mathrm{2}} +\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{2}\right){x}−{h}^{\mathrm{3}} +{h}+{k}=\mathrm{0} \\ $$$${roots}\:{are}\:\:{p},{s},{s} \\ $$$$\Rightarrow\:\:\mathrm{2}\left({x}−{s}\right)^{\mathrm{2}} \left({x}−{p}\right)=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{3}} −\mathrm{2}\left({p}+\mathrm{2}{s}\right){x}^{\mathrm{2}} +\mathrm{2}{s}\left(\mathrm{2}{p}+{s}\right){x} \\ $$$$\:\:\:\:\:\:−\mathrm{2}{ps}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:{p}+\mathrm{2}{s}=\frac{\mathrm{3}{h}}{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{2}{s}\left(\mathrm{2}{p}+{s}\right)=\mathrm{3}{h}^{\mathrm{2}} −\mathrm{2} \\ $$$$\:\:\:\:\mathrm{2}{ps}^{\mathrm{2}} ={h}^{\mathrm{3}} −{h}−{k} \\ $$$$\Rightarrow\:\:\mathrm{2}{s}\left(\mathrm{2}{p}+{s}\right)=\mathrm{3}\left(\frac{\mathrm{2}{p}}{\mathrm{3}}+\frac{\mathrm{4}{s}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$$\Rightarrow\:\:\mathrm{12}{sp}+\mathrm{6}{s}^{\mathrm{2}} +\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{4}{p}^{\mathrm{2}} +\mathrm{16}{s}^{\mathrm{2}} +\mathrm{16}{sp} \\ $$$$\Rightarrow\:\:\mathrm{4}{p}^{\mathrm{2}} +\mathrm{4}{sp}+\mathrm{10}{s}^{\mathrm{2}} −\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{4}\left({p}+{c}\right)+\mathrm{4}{sp}^{\mathrm{2}} +\mathrm{2}{p}\left(\mathrm{5}{s}^{\mathrm{2}} −\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{4}{p}+\mathrm{4}{c}+\mathrm{2}{p}\left(\mathrm{5}{s}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}{s}^{\mathrm{2}} {p}+\mathrm{2}{s}\left(\mathrm{5}{s}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$\Rightarrow\:\:{p}=\frac{\mathrm{2}{s}\left(\mathrm{5}{s}^{\mathrm{2}} −\mathrm{3}\right)−\mathrm{4}{c}}{\mathrm{2}\left(\mathrm{5}{s}^{\mathrm{2}} −\mathrm{3}\right)−\mathrm{4}{s}^{\mathrm{2}} +\mathrm{4}} \\ $$$${or}\:\:{p}=\frac{{s}\left(\mathrm{5}{s}^{\mathrm{2}} −\mathrm{3}\right)−\mathrm{2}{c}}{\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{4}\left(\mathrm{5}{s}^{\mathrm{3}} −\mathrm{3}{s}−\mathrm{2}{c}\right)^{\mathrm{2}} +\mathrm{4}{s}\left(\mathrm{5}{s}^{\mathrm{3}} −\mathrm{3}{s}−\mathrm{2}{c}\right)\left(\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$\:\:\:+\mathrm{2}\left(\mathrm{5}{s}^{\mathrm{2}} −\mathrm{3}\right)\left(\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{250}{s}^{\mathrm{6}} −\mathrm{290}{s}^{\mathrm{4}} −\mathrm{104}{cs}^{\mathrm{3}} \\ $$$$\:\:\:\:+\mathrm{94}{x}^{\mathrm{2}} +\mathrm{56}{cx}+\mathrm{16}{c}^{\mathrm{2}} −\mathrm{6}=\mathrm{0} \\ $$$${cannot}\:{we}\:{factorise}\:{this}\:{eq}..? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com