Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 166137 by ajfour last updated on 13/Feb/22

Answered by mr W last updated on 14/Feb/22

Commented by mr W last updated on 14/Feb/22

((sin (θ+φ))/(sin θ))=((r+(r/(sin φ)))/(2r))=(1/2)(1+(1/(sin φ)))  ((sin θ cos φ+cos θ sin φ)/(sin θ))=(1/2)(1+(1/(sin φ)))  cos φ+((sin φ)/(tan θ))=(1/2)(1+(1/(sin φ)))  ((sin φ)/(tan θ))=((1+sin φ−sin 2φ)/(2 sin φ))  ⇒tan θ=((1−cos 2φ)/(sin φ+1−sin 2φ))  (tan θ)_(max) ≈1.5261  ⇒θ_(max) ≈56.7647°

$$\frac{\mathrm{sin}\:\left(\theta+\phi\right)}{\mathrm{sin}\:\theta}=\frac{{r}+\frac{{r}}{\mathrm{sin}\:\phi}}{\mathrm{2}{r}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\phi}\right) \\ $$$$\frac{\mathrm{sin}\:\theta\:\mathrm{cos}\:\phi+\mathrm{cos}\:\theta\:\mathrm{sin}\:\phi}{\mathrm{sin}\:\theta}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\phi}\right) \\ $$$$\mathrm{cos}\:\phi+\frac{\mathrm{sin}\:\phi}{\mathrm{tan}\:\theta}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\phi}\right) \\ $$$$\frac{\mathrm{sin}\:\phi}{\mathrm{tan}\:\theta}=\frac{\mathrm{1}+\mathrm{sin}\:\phi−\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{2}\:\mathrm{sin}\:\phi} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\phi}{\mathrm{sin}\:\phi+\mathrm{1}−\mathrm{sin}\:\mathrm{2}\phi} \\ $$$$\left(\mathrm{tan}\:\theta\right)_{{max}} \approx\mathrm{1}.\mathrm{5261} \\ $$$$\Rightarrow\theta_{{max}} \approx\mathrm{56}.\mathrm{7647}° \\ $$

Answered by MJS_new last updated on 14/Feb/22

I tried with r=1 the center of the circle  ((p),(1) )  and ⇒ △ABC  A= ((0),(0) )     B= ((2),(0) )     C= (((p+(p/( (√(p^2 +1)))))),((1+(1/( (√(p^2 +1)))))) )  it′s then possible to get an exact value for p  with θ → max:  p=(1/2)+((√5)/4)−((√(−7+4(√5)))/4)≈.710424116687  and ⇒ θ≈56.7648°  which of course is the same result as mrW got

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{with}\:{r}=\mathrm{1}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\begin{pmatrix}{{p}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{and}\:\Rightarrow\:\bigtriangleup{ABC} \\ $$$${A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:\:\:\:{B}=\begin{pmatrix}{\mathrm{2}}\\{\mathrm{0}}\end{pmatrix}\:\:\:\:\:{C}=\begin{pmatrix}{{p}+\frac{{p}}{\:\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}}\\{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}}\end{pmatrix} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{then}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{get}\:\mathrm{an}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{for}\:{p} \\ $$$$\mathrm{with}\:\theta\:\rightarrow\:\mathrm{max}: \\ $$$${p}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}−\frac{\sqrt{−\mathrm{7}+\mathrm{4}\sqrt{\mathrm{5}}}}{\mathrm{4}}\approx.\mathrm{710424116687} \\ $$$$\mathrm{and}\:\Rightarrow\:\theta\approx\mathrm{56}.\mathrm{7648}° \\ $$$$\mathrm{which}\:\mathrm{of}\:\mathrm{course}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{result}\:\mathrm{as}\:\mathrm{mrW}\:\mathrm{got} \\ $$

Commented by mr W last updated on 15/Feb/22

great sir!  somehow i have expected that you  may get the exact solution. thanks!

$${great}\:{sir}! \\ $$$${somehow}\:{i}\:{have}\:{expected}\:{that}\:{you} \\ $$$${may}\:{get}\:{the}\:{exact}\:{solution}.\:{thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com